rand_distr

Trait Distribution

Source
pub trait Distribution<T> {
    // Required method
    fn sample<R>(&self, rng: &mut R) -> T
       where R: Rng + ?Sized;

    // Provided methods
    fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T> 
       where R: Rng,
             Self: Sized { ... }
    fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
       where F: Fn(T) -> S,
             Self: Sized { ... }
}
Expand description

Types (distributions) that can be used to create a random instance of T.

It is possible to sample from a distribution through both the Distribution and Rng traits, via distr.sample(&mut rng) and rng.sample(distr). They also both offer the sample_iter method, which produces an iterator that samples from the distribution.

All implementations are expected to be immutable; this has the significant advantage of not needing to consider thread safety, and for most distributions efficient state-less sampling algorithms are available.

Implementations are typically expected to be portable with reproducible results when used with a PRNG with fixed seed; see the portability chapter of The Rust Rand Book. In some cases this does not apply, e.g. the usize type requires different sampling on 32-bit and 64-bit machines.

Required Methods§

Source

fn sample<R>(&self, rng: &mut R) -> T
where R: Rng + ?Sized,

Generate a random value of T, using rng as the source of randomness.

Provided Methods§

Source

fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where R: Rng, Self: Sized,

Create an iterator that generates random values of T, using rng as the source of randomness.

Note that this function takes self by value. This works since Distribution<T> is impl’d for &D where D: Distribution<T>, however borrowing is not automatic hence distr.sample_iter(...) may need to be replaced with (&distr).sample_iter(...) to borrow or (&*distr).sample_iter(...) to reborrow an existing reference.

§Example
use rand::distr::{Distribution, Alphanumeric, Uniform, StandardUniform};

let mut rng = rand::rng();

// Vec of 16 x f32:
let v: Vec<f32> = StandardUniform.sample_iter(&mut rng).take(16).collect();

// String:
let s: String = Alphanumeric
    .sample_iter(&mut rng)
    .take(7)
    .map(char::from)
    .collect();

// Dice-rolling:
let die_range = Uniform::new_inclusive(1, 6).unwrap();
let mut roll_die = die_range.sample_iter(&mut rng);
while roll_die.next().unwrap() != 6 {
    println!("Not a 6; rolling again!");
}
Source

fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
where F: Fn(T) -> S, Self: Sized,

Create a distribution of values of ‘S’ by mapping the output of Self through the closure F

§Example
use rand::distr::{Distribution, Uniform};

let mut rng = rand::rng();

let die = Uniform::new_inclusive(1, 6).unwrap();
let even_number = die.map(|num| num % 2 == 0);
while !even_number.sample(&mut rng) {
    println!("Still odd; rolling again!");
}

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

Source§

impl<T, D> Distribution<T> for &D
where D: Distribution<T> + ?Sized,

Source§

fn sample<R>(&self, rng: &mut R) -> T
where R: Rng + ?Sized,

Implementors§

Source§

impl Distribution<bool> for Bernoulli

Source§

impl Distribution<bool> for StandardUniform

Source§

impl Distribution<char> for StandardUniform

Source§

impl Distribution<f32> for Exp1

Source§

impl Distribution<f32> for Open01

Source§

impl Distribution<f32> for OpenClosed01

Source§

impl Distribution<f32> for StandardNormal

Source§

impl Distribution<f32> for StandardUniform

Source§

impl Distribution<f64> for Exp1

Source§

impl Distribution<f64> for Open01

Source§

impl Distribution<f64> for OpenClosed01

Source§

impl Distribution<f64> for StandardNormal

Source§

impl Distribution<f64> for StandardUniform

Source§

impl Distribution<i8> for StandardUniform

Source§

impl Distribution<i16> for StandardUniform

Source§

impl Distribution<i32> for StandardUniform

Source§

impl Distribution<i64> for StandardUniform

Source§

impl Distribution<i128> for StandardUniform

Source§

impl Distribution<u8> for Alphanumeric

Source§

impl Distribution<u8> for StandardUniform

Source§

impl Distribution<u16> for StandardUniform

Source§

impl Distribution<u32> for StandardUniform

Source§

impl Distribution<u64> for Binomial

Source§

impl Distribution<u64> for Geometric

Source§

impl Distribution<u64> for Hypergeometric

Source§

impl Distribution<u64> for StandardGeometric

Source§

impl Distribution<u64> for StandardUniform

Source§

impl Distribution<u128> for StandardUniform

Source§

impl Distribution<()> for StandardUniform

Source§

impl Distribution<__m128i> for StandardUniform

Source§

impl Distribution<__m256i> for StandardUniform

Source§

impl Distribution<__m512i> for StandardUniform

Source§

impl Distribution<Simd<f32, 2>> for Open01

Source§

impl Distribution<Simd<f32, 2>> for OpenClosed01

Source§

impl Distribution<Simd<f32, 2>> for StandardUniform

Source§

impl Distribution<Simd<f32, 4>> for Open01

Source§

impl Distribution<Simd<f32, 4>> for OpenClosed01

Source§

impl Distribution<Simd<f32, 4>> for StandardUniform

Source§

impl Distribution<Simd<f32, 8>> for Open01

Source§

impl Distribution<Simd<f32, 8>> for OpenClosed01

Source§

impl Distribution<Simd<f32, 8>> for StandardUniform

Source§

impl Distribution<Simd<f32, 16>> for Open01

Source§

impl Distribution<Simd<f32, 16>> for OpenClosed01

Source§

impl Distribution<Simd<f32, 16>> for StandardUniform

Source§

impl Distribution<Simd<f64, 2>> for Open01

Source§

impl Distribution<Simd<f64, 2>> for OpenClosed01

Source§

impl Distribution<Simd<f64, 2>> for StandardUniform

Source§

impl Distribution<Simd<f64, 4>> for Open01

Source§

impl Distribution<Simd<f64, 4>> for OpenClosed01

Source§

impl Distribution<Simd<f64, 4>> for StandardUniform

Source§

impl Distribution<Simd<f64, 8>> for Open01

Source§

impl Distribution<Simd<f64, 8>> for OpenClosed01

Source§

impl Distribution<Simd<f64, 8>> for StandardUniform

Source§

impl Distribution<NonZero<i8>> for StandardUniform

Source§

impl Distribution<NonZero<i16>> for StandardUniform

Source§

impl Distribution<NonZero<i32>> for StandardUniform

Source§

impl Distribution<NonZero<i64>> for StandardUniform

Source§

impl Distribution<NonZero<i128>> for StandardUniform

Source§

impl Distribution<NonZero<u8>> for StandardUniform

Source§

impl Distribution<NonZero<u16>> for StandardUniform

Source§

impl Distribution<NonZero<u32>> for StandardUniform

Source§

impl Distribution<NonZero<u64>> for StandardUniform

Source§

impl Distribution<NonZero<u128>> for StandardUniform

Source§

impl<'a, T> Distribution<&'a T> for Slice<'a, T>

Source§

impl<A> Distribution<(A,)> for StandardUniform

Source§

impl<A, B> Distribution<(A, B)> for StandardUniform

Source§

impl<A, B, C> Distribution<(A, B, C)> for StandardUniform

Source§

impl<A, B, C, D> Distribution<(A, B, C, D)> for StandardUniform

Source§

impl<A, B, C, D, E> Distribution<(A, B, C, D, E)> for StandardUniform

Source§

impl<A, B, C, D, E, F> Distribution<(A, B, C, D, E, F)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G> Distribution<(A, B, C, D, E, F, G)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G, H> Distribution<(A, B, C, D, E, F, G, H)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G, H, I> Distribution<(A, B, C, D, E, F, G, H, I)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G, H, I, J> Distribution<(A, B, C, D, E, F, G, H, I, J)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G, H, I, J, K> Distribution<(A, B, C, D, E, F, G, H, I, J, K)> for StandardUniform

Source§

impl<A, B, C, D, E, F, G, H, I, J, K, L> Distribution<(A, B, C, D, E, F, G, H, I, J, K, L)> for StandardUniform

Source§

impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S>
where D: Distribution<T>, F: Fn(T) -> S,

Source§

impl<F> Distribution<F> for Beta<F>
where F: Float, Open01: Distribution<F>,

Source§

impl<F> Distribution<F> for Cauchy<F>

Source§

impl<F> Distribution<F> for ChiSquared<F>

Source§

impl<F> Distribution<F> for Exp<F>
where F: Float, Exp1: Distribution<F>,

Source§

impl<F> Distribution<F> for FisherF<F>

Source§

impl<F> Distribution<F> for Frechet<F>

Source§

impl<F> Distribution<F> for Gamma<F>

Source§

impl<F> Distribution<F> for Gumbel<F>

Source§

impl<F> Distribution<F> for InverseGaussian<F>

Source§

impl<F> Distribution<F> for LogNormal<F>

Source§

impl<F> Distribution<F> for Normal<F>

Source§

impl<F> Distribution<F> for NormalInverseGaussian<F>

Source§

impl<F> Distribution<F> for Pareto<F>

Source§

impl<F> Distribution<F> for Pert<F>

Source§

impl<F> Distribution<F> for Poisson<F>

Source§

impl<F> Distribution<F> for SkewNormal<F>

Source§

impl<F> Distribution<F> for StudentT<F>

Source§

impl<F> Distribution<F> for Triangular<F>

Source§

impl<F> Distribution<F> for Weibull<F>

Source§

impl<F> Distribution<F> for Zeta<F>

Source§

impl<F> Distribution<F> for Zipf<F>

Source§

impl<F, const N: usize> Distribution<[F; N]> for Dirichlet<F, N>

Source§

impl<F: Float + SampleUniform> Distribution<[F; 2]> for UnitCircle

Source§

impl<F: Float + SampleUniform> Distribution<[F; 2]> for UnitDisc

Source§

impl<F: Float + SampleUniform> Distribution<[F; 3]> for UnitBall

Source§

impl<F: Float + SampleUniform> Distribution<[F; 3]> for UnitSphere

Source§

impl<T> Distribution<Wrapping<T>> for StandardUniform

Source§

impl<T, const LANES: usize> Distribution<Mask<T, LANES>> for StandardUniform
where T: MaskElement + Default, LaneCount<LANES>: SupportedLaneCount, StandardUniform: Distribution<Simd<T, LANES>>, Simd<T, LANES>: SimdPartialOrd<Mask = Mask<T, LANES>>,

Note that on some hardware like x86/64 mask operations like _mm_blendv_epi8 only care about a single bit. This means that you could use uniform random bits directly:

// this may be faster...
let x = unsafe { _mm_blendv_epi8(a.into(), b.into(), rng.random::<__m128i>()) };

// ...than this
let x = rng.random::<mask8x16>().select(b, a);

Since most bits are unused you could also generate only as many bits as you need, i.e.:

#![feature(portable_simd)]
use std::simd::prelude::*;
use rand::prelude::*;
let mut rng = rand::rng();

let x = u16x8::splat(rng.random::<u8>() as u16);
let mask = u16x8::splat(1) << u16x8::from([0, 1, 2, 3, 4, 5, 6, 7]);
let rand_mask = (x & mask).simd_eq(mask);
Source§

impl<T, const N: usize> Distribution<[T; N]> for StandardUniform

Source§

impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight> Distribution<usize> for WeightedTreeIndex<W>

Samples a randomly selected index from the weighted distribution.

Caution: This method panics if there are no elements or all weights are zero. However, it is guaranteed that this method will not panic if a call to WeightedTreeIndex::is_valid returns true.

Source§

impl<W: AliasableWeight> Distribution<usize> for WeightedAliasIndex<W>

Source§

impl<X> Distribution<usize> for WeightedIndex<X>

Source§

impl<X> Distribution<X> for Uniform<X>
where X: SampleUniform,

Source§

impl<const LANES: usize> Distribution<Simd<i8, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<i16, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<i32, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<i64, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<u8, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<u16, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<u32, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature

Source§

impl<const LANES: usize> Distribution<Simd<u64, LANES>> for StandardUniform

Requires nightly Rust and the simd_support feature