rand_distr/gamma.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gamma distribution.
use self::GammaRepr::*;
use crate::{Distribution, Exp, Exp1, Open01, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// The [Gamma distribution](https://en.wikipedia.org/wiki/Gamma_distribution) `Gamma(k, θ)`.
///
/// The Gamma distribution is a continuous probability distribution
/// with shape parameter `k > 0` (number of events) and
/// scale parameter `θ > 0` (mean waiting time between events).
/// It describes the time until `k` events occur in a Poisson
/// process with rate `1/θ`. It is the generalization of the
/// [`Exponential`](crate::Exp) distribution.
///
/// # Density function
///
/// `f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)` for `x > 0`,
/// where `Γ` is the [gamma function](https://en.wikipedia.org/wiki/Gamma_function).
///
/// # Plot
///
/// The following plot illustrates the Gamma distribution with
/// various values of `k` and `θ`.
/// Curves with `θ = 1` are more saturated, while corresponding
/// curves with `θ = 2` have a lighter color.
///
/// ![Gamma distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/gamma.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Gamma};
///
/// let gamma = Gamma::new(2.0, 5.0).unwrap();
/// let v = gamma.sample(&mut rand::rng());
/// println!("{} is from a Gamma(2, 5) distribution", v);
/// ```
///
/// # Notes
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000), 363-372.
/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
repr: GammaRepr<F>,
}
/// Error type returned from [`Gamma::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `shape <= 0` or `nan`.
ShapeTooSmall,
/// `scale <= 0` or `nan`.
ScaleTooSmall,
/// `1 / scale == 0`.
ScaleTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "shape is not positive in gamma distribution",
Error::ScaleTooSmall => "scale is not positive in gamma distribution",
Error::ScaleTooLarge => "scale is infinity in gamma distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
enum GammaRepr<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
Large(GammaLargeShape<F>),
One(Exp<F>),
Small(GammaSmallShape<F>),
}
// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.
/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
struct GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
inv_shape: F,
large_shape: GammaLargeShape<F>,
}
/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
struct GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
scale: F,
c: F,
d: F,
}
impl<F> Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Construct an object representing the `Gamma(shape, scale)`
/// distribution.
#[inline]
pub fn new(shape: F, scale: F) -> Result<Gamma<F>, Error> {
if !(shape > F::zero()) {
return Err(Error::ShapeTooSmall);
}
if !(scale > F::zero()) {
return Err(Error::ScaleTooSmall);
}
let repr = if shape == F::one() {
One(Exp::new(F::one() / scale).map_err(|_| Error::ScaleTooLarge)?)
} else if shape < F::one() {
Small(GammaSmallShape::new_raw(shape, scale))
} else {
Large(GammaLargeShape::new_raw(shape, scale))
};
Ok(Gamma { repr })
}
}
impl<F> GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn new_raw(shape: F, scale: F) -> GammaSmallShape<F> {
GammaSmallShape {
inv_shape: F::one() / shape,
large_shape: GammaLargeShape::new_raw(shape + F::one(), scale),
}
}
}
impl<F> GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn new_raw(shape: F, scale: F) -> GammaLargeShape<F> {
let d = shape - F::from(1. / 3.).unwrap();
GammaLargeShape {
scale,
c: F::one() / (F::from(9.).unwrap() * d).sqrt(),
d,
}
}
}
impl<F> Distribution<F> for Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match self.repr {
Small(ref g) => g.sample(rng),
One(ref g) => g.sample(rng),
Large(ref g) => g.sample(rng),
}
}
}
impl<F> Distribution<F> for GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let u: F = rng.sample(Open01);
self.large_shape.sample(rng) * u.powf(self.inv_shape)
}
}
impl<F> Distribution<F> for GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// Marsaglia & Tsang method, 2000
loop {
let x: F = rng.sample(StandardNormal);
let v_cbrt = F::one() + self.c * x;
if v_cbrt <= F::zero() {
// a^3 <= 0 iff a <= 0
continue;
}
let v = v_cbrt * v_cbrt * v_cbrt;
let u: F = rng.sample(Open01);
let x_sqr = x * x;
if u < F::one() - F::from(0.0331).unwrap() * x_sqr * x_sqr
|| u.ln() < F::from(0.5).unwrap() * x_sqr + self.d * (F::one() - v + v.ln())
{
return self.d * v * self.scale;
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn gamma_distributions_can_be_compared() {
assert_eq!(Gamma::new(1.0, 2.0), Gamma::new(1.0, 2.0));
}
}