rand/distr/uniform.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6).unwrap()` can sample integers from 1 to 6, like a
//! standard die. [`Rng::random_range`] is implemented over [`Uniform`].
//!
//! # Example usage
//!
//! ```
//! use rand::Rng;
//! use rand::distr::Uniform;
//!
//! let mut rng = rand::rng();
//! let side = Uniform::new(-10.0, 10.0).unwrap();
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.random_range(1..=10) {
//! // sample a point from the square with sides -10 - 10 in two dimensions
//! let (x, y) = (rng.sample(side), rng.sample(side));
//! println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assertion to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! The `new`, `new_inclusive`, `sample_single` and `sample_single_inclusive`
//! functions use arguments of
//! type `SampleBorrow<X>` to support passing in values by reference or
//! by value. In the implementation of these functions, you can choose to
//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
//! to copy or clone the value, whatever is appropriate for your type.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distr::uniform::{Uniform, SampleUniform,
//! UniformSampler, UniformFloat, SampleBorrow, Error};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32(UniformFloat<f32>);
//!
//! impl UniformSampler for UniformMyF32 {
//! type X = MyF32;
//!
//! fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformFloat::<f32>::new(low.borrow().0, high.borrow().0).map(UniformMyF32)
//! }
//! fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//! where B1: SampleBorrow<Self::X> + Sized,
//! B2: SampleBorrow<Self::X> + Sized
//! {
//! UniformFloat::<f32>::new_inclusive(low.borrow().0, high.borrow().0).map(UniformMyF32)
//! }
//! fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//! MyF32(self.0.sample(rng))
//! }
//! }
//!
//! impl SampleUniform for MyF32 {
//! type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high).unwrap();
//! let x = uniform.sample(&mut rand::rng());
//! ```
//!
//! [`SampleUniform`]: crate::distr::uniform::SampleUniform
//! [`UniformSampler`]: crate::distr::uniform::UniformSampler
//! [`UniformInt`]: crate::distr::uniform::UniformInt
//! [`UniformFloat`]: crate::distr::uniform::UniformFloat
//! [`UniformDuration`]: crate::distr::uniform::UniformDuration
//! [`SampleBorrow::borrow`]: crate::distr::uniform::SampleBorrow::borrow
#[path = "uniform_float.rs"]
mod float;
#[doc(inline)]
pub use float::UniformFloat;
#[path = "uniform_int.rs"]
mod int;
#[doc(inline)]
pub use int::{UniformInt, UniformUsize};
#[path = "uniform_other.rs"]
mod other;
#[doc(inline)]
pub use other::{UniformChar, UniformDuration};
use core::fmt;
use core::ops::{Range, RangeInclusive, RangeTo, RangeToInclusive};
use crate::distr::Distribution;
use crate::{Rng, RngCore};
/// Error type returned from [`Uniform::new`] and `new_inclusive`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `low > high`, or equal in case of exclusive range.
EmptyRange,
/// Input or range `high - low` is non-finite. Not relevant to integer types.
NonFinite,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::EmptyRange => "low > high (or equal if exclusive) in uniform distribution",
Error::NonFinite => "Non-finite range in uniform distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// Sample values uniformly between two bounds.
///
/// # Construction
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given `low` and `high` limits. `Uniform` may
/// also be constructed via [`TryFrom`] as in `Uniform::try_from(1..=6).unwrap()`.
///
/// Constructors may do extra work up front to allow faster sampling of multiple
/// values. Where only a single sample is required it is suggested to use
/// [`Rng::random_range`] or one of the `sample_single` methods instead.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types, this should have comparable performance to
/// the [`StandardUniform`](super::StandardUniform) distribution.
///
/// # Provided implementations
///
/// - `char` ([`UniformChar`]): samples a range over the implementation for `u32`
/// - `f32`, `f64` ([`UniformFloat`]): samples approximately uniformly within a
/// range; bias may be present in the least-significant bit of the significand
/// and the limits of the input range may be sampled even when an open
/// (exclusive) range is used
/// - Integer types ([`UniformInt`]) may show a small bias relative to the
/// expected uniform distribution of output. In the worst case, bias affects
/// 1 in `2^n` samples where n is 56 (`i8` and `u8`), 48 (`i16` and `u16`), 96
/// (`i32` and `u32`), 64 (`i64` and `u64`), 128 (`i128` and `u128`).
/// The `unbiased` feature flag fixes this bias.
/// - `usize` ([`UniformUsize`]) is handled specially, using the `u32`
/// implementation where possible to enable portable results across 32-bit and
/// 64-bit CPU architectures.
/// - `Duration` ([`UniformDuration`]): samples a range over the implementation
/// for `u32` or `u64`
/// - SIMD types (requires [`simd_support`] feature) like x86's [`__m128i`]
/// and `std::simd`'s [`u32x4`], [`f32x4`] and [`mask32x4`] types are
/// effectively arrays of integer or floating-point types. Each lane is
/// sampled independently from its own range, potentially with more efficient
/// random-bit-usage than would be achieved with sequential sampling.
///
/// # Example
///
/// ```
/// use rand::distr::{Distribution, Uniform};
///
/// let between = Uniform::try_from(10..10000).unwrap();
/// let mut rng = rand::rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
/// sum += between.sample(&mut rng);
/// }
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::random_range`] may be preferred:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::rng();
/// println!("{}", rng.random_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::random_range`]: Rng::random_range
/// [`__m128i`]: https://doc.rust-lang.org/core/arch/x86/struct.__m128i.html
/// [`u32x4`]: std::simd::u32x4
/// [`f32x4`]: std::simd::f32x4
/// [`mask32x4`]: std::simd::mask32x4
/// [`simd_support`]: https://github.com/rust-random/rand#crate-features
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "X::Sampler: Serialize")))]
#[cfg_attr(
feature = "serde",
serde(bound(deserialize = "X::Sampler: Deserialize<'de>"))
)]
pub struct Uniform<X: SampleUniform>(X::Sampler);
impl<X: SampleUniform> Uniform<X> {
/// Create a new `Uniform` instance, which samples uniformly from the half
/// open range `[low, high)` (excluding `high`).
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// Fails if `low >= high`, or if `low`, `high` or the range `high - low` is
/// non-finite. In release mode, only the range is checked.
pub fn new<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
X::Sampler::new(low, high).map(Uniform)
}
/// Create a new `Uniform` instance, which samples uniformly from the closed
/// range `[low, high]` (inclusive).
///
/// Fails if `low > high`, or if `low`, `high` or the range `high - low` is
/// non-finite. In release mode, only the range is checked.
pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
where
B1: SampleBorrow<X> + Sized,
B2: SampleBorrow<X> + Sized,
{
X::Sampler::new_inclusive(low, high).map(Uniform)
}
}
impl<X: SampleUniform> Distribution<X> for Uniform<X> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
self.0.sample(rng)
}
}
/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [module documentation]: crate::distr::uniform
pub trait SampleUniform: Sized {
/// The `UniformSampler` implementation supporting type `X`.
type Sampler: UniformSampler<X = Self>;
}
/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: crate::distr::uniform
/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
/// The type sampled by this implementation.
type X;
/// Construct self, with inclusive lower bound and exclusive upper bound `[low, high)`.
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// Usually users should not call this directly but prefer to use
/// [`Uniform::new`].
fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Construct self, with inclusive bounds `[low, high]`.
///
/// Usually users should not call this directly but prefer to use
/// [`Uniform::new_inclusive`].
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized;
/// Sample a value.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;
/// Sample a single value uniformly from a range with inclusive lower bound
/// and exclusive upper bound `[low, high)`.
///
/// For discrete types (e.g. integers), samples will always be strictly less
/// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
/// samples may equal `high` due to loss of precision but may not be
/// greater than `high`.
///
/// By default this is implemented using
/// `UniformSampler::new(low, high).sample(rng)`. However, for some types
/// more optimal implementations for single usage may be provided via this
/// method (which is the case for integers and floats).
/// Results may not be identical.
///
/// Note that to use this method in a generic context, the type needs to be
/// retrieved via `SampleUniform::Sampler` as follows:
/// ```
/// use rand::distr::uniform::{SampleUniform, UniformSampler};
/// # #[allow(unused)]
/// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
/// let mut rng = rand::rng();
/// <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng).unwrap()
/// }
/// ```
fn sample_single<R: Rng + ?Sized, B1, B2>(
low: B1,
high: B2,
rng: &mut R,
) -> Result<Self::X, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let uniform: Self = UniformSampler::new(low, high)?;
Ok(uniform.sample(rng))
}
/// Sample a single value uniformly from a range with inclusive lower bound
/// and inclusive upper bound `[low, high]`.
///
/// By default this is implemented using
/// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
/// some types more optimal implementations for single usage may be provided
/// via this method.
/// Results may not be identical.
fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
low: B1,
high: B2,
rng: &mut R,
) -> Result<Self::X, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
let uniform: Self = UniformSampler::new_inclusive(low, high)?;
Ok(uniform.sample(rng))
}
}
impl<X: SampleUniform> TryFrom<Range<X>> for Uniform<X> {
type Error = Error;
fn try_from(r: Range<X>) -> Result<Uniform<X>, Error> {
Uniform::new(r.start, r.end)
}
}
impl<X: SampleUniform> TryFrom<RangeInclusive<X>> for Uniform<X> {
type Error = Error;
fn try_from(r: ::core::ops::RangeInclusive<X>) -> Result<Uniform<X>, Error> {
Uniform::new_inclusive(r.start(), r.end())
}
}
/// Helper trait similar to [`Borrow`] but implemented
/// only for [`SampleUniform`] and references to [`SampleUniform`]
/// in order to resolve ambiguity issues.
///
/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
/// Immutably borrows from an owned value. See [`Borrow::borrow`]
///
/// [`Borrow::borrow`]: std::borrow::Borrow::borrow
fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
where
Borrowed: SampleUniform,
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
self
}
}
impl<Borrowed> SampleBorrow<Borrowed> for &Borrowed
where
Borrowed: SampleUniform,
{
#[inline(always)]
fn borrow(&self) -> &Borrowed {
self
}
}
/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::random_range`.
pub trait SampleRange<T> {
/// Generate a sample from the given range.
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error>;
/// Check whether the range is empty.
fn is_empty(&self) -> bool;
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
T::Sampler::sample_single(self.start, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start < self.end)
}
}
impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
}
#[inline]
fn is_empty(&self) -> bool {
!(self.start() <= self.end())
}
}
macro_rules! impl_sample_range_u {
($t:ty) => {
impl SampleRange<$t> for RangeTo<$t> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
<$t as SampleUniform>::Sampler::sample_single(0, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
0 == self.end
}
}
impl SampleRange<$t> for RangeToInclusive<$t> {
#[inline]
fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
<$t as SampleUniform>::Sampler::sample_single_inclusive(0, self.end, rng)
}
#[inline]
fn is_empty(&self) -> bool {
false
}
}
};
}
impl_sample_range_u!(u8);
impl_sample_range_u!(u16);
impl_sample_range_u!(u32);
impl_sample_range_u!(u64);
impl_sample_range_u!(u128);
impl_sample_range_u!(usize);
#[cfg(test)]
mod tests {
use super::*;
use core::time::Duration;
#[test]
#[cfg(feature = "serde")]
fn test_uniform_serialization() {
let unit_box: Uniform<i32> = Uniform::new(-1, 1).unwrap();
let de_unit_box: Uniform<i32> =
bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0, de_unit_box.0);
let unit_box: Uniform<f32> = Uniform::new(-1., 1.).unwrap();
let de_unit_box: Uniform<f32> =
bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
assert_eq!(unit_box.0, de_unit_box.0);
}
#[test]
fn test_custom_uniform() {
use crate::distr::uniform::{SampleBorrow, SampleUniform, UniformFloat, UniformSampler};
#[derive(Clone, Copy, PartialEq, PartialOrd)]
struct MyF32 {
x: f32,
}
#[derive(Clone, Copy, Debug)]
struct UniformMyF32(UniformFloat<f32>);
impl UniformSampler for UniformMyF32 {
type X = MyF32;
fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformFloat::<f32>::new(low.borrow().x, high.borrow().x).map(UniformMyF32)
}
fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
where
B1: SampleBorrow<Self::X> + Sized,
B2: SampleBorrow<Self::X> + Sized,
{
UniformSampler::new(low, high)
}
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
MyF32 {
x: self.0.sample(rng),
}
}
}
impl SampleUniform for MyF32 {
type Sampler = UniformMyF32;
}
let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
let uniform = Uniform::new(low, high).unwrap();
let mut rng = crate::test::rng(804);
for _ in 0..100 {
let x: MyF32 = rng.sample(uniform);
assert!(low <= x && x < high);
}
}
#[test]
fn value_stability() {
fn test_samples<T: SampleUniform + Copy + fmt::Debug + PartialEq>(
lb: T,
ub: T,
expected_single: &[T],
expected_multiple: &[T],
) where
Uniform<T>: Distribution<T>,
{
let mut rng = crate::test::rng(897);
let mut buf = [lb; 3];
for x in &mut buf {
*x = T::Sampler::sample_single(lb, ub, &mut rng).unwrap();
}
assert_eq!(&buf, expected_single);
let distr = Uniform::new(lb, ub).unwrap();
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected_multiple);
}
test_samples(
0f32,
1e-2f32,
&[0.0003070104, 0.0026630748, 0.00979833],
&[0.008194133, 0.00398172, 0.007428536],
);
test_samples(
-1e10f64,
1e10f64,
&[-4673848682.871551, 6388267422.932352, 4857075081.198343],
&[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
);
test_samples(
Duration::new(2, 0),
Duration::new(4, 0),
&[
Duration::new(2, 532615131),
Duration::new(3, 638826742),
Duration::new(3, 485707508),
],
&[
Duration::new(3, 117337521),
Duration::new(3, 191764285),
Duration::new(3, 236507617),
],
);
}
#[test]
fn uniform_distributions_can_be_compared() {
assert_eq!(
Uniform::new(1.0, 2.0).unwrap(),
Uniform::new(1.0, 2.0).unwrap()
);
// To cover UniformInt
assert_eq!(
Uniform::new(1_u32, 2_u32).unwrap(),
Uniform::new(1_u32, 2_u32).unwrap()
);
}
}