1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A distribution uniformly sampling numbers within a given range.
//!
//! [`Uniform`] is the standard distribution to sample uniformly from a range;
//! e.g. `Uniform::new_inclusive(1, 6).unwrap()` can sample integers from 1 to 6, like a
//! standard die. [`Rng::gen_range`] supports any type supported by [`Uniform`].
//!
//! This distribution is provided with support for several primitive types
//! (all integer and floating-point types) as well as [`std::time::Duration`],
//! and supports extension to user-defined types via a type-specific *back-end*
//! implementation.
//!
//! The types [`UniformInt`], [`UniformFloat`] and [`UniformDuration`] are the
//! back-ends supporting sampling from primitive integer and floating-point
//! ranges as well as from [`std::time::Duration`]; these types do not normally
//! need to be used directly (unless implementing a derived back-end).
//!
//! # Example usage
//!
//! ```
//! use rand::{Rng, thread_rng};
//! use rand::distr::Uniform;
//!
//! let mut rng = thread_rng();
//! let side = Uniform::new(-10.0, 10.0).unwrap();
//!
//! // sample between 1 and 10 points
//! for _ in 0..rng.gen_range(1..=10) {
//!     // sample a point from the square with sides -10 - 10 in two dimensions
//!     let (x, y) = (rng.sample(side), rng.sample(side));
//!     println!("Point: {}, {}", x, y);
//! }
//! ```
//!
//! # Extending `Uniform` to support a custom type
//!
//! To extend [`Uniform`] to support your own types, write a back-end which
//! implements the [`UniformSampler`] trait, then implement the [`SampleUniform`]
//! helper trait to "register" your back-end. See the `MyF32` example below.
//!
//! At a minimum, the back-end needs to store any parameters needed for sampling
//! (e.g. the target range) and implement `new`, `new_inclusive` and `sample`.
//! Those methods should include an assertion to check the range is valid (i.e.
//! `low < high`). The example below merely wraps another back-end.
//!
//! The `new`, `new_inclusive`, `sample_single` and `sample_single_inclusive`
//! functions use arguments of
//! type `SampleBorrow<X>` to support passing in values by reference or
//! by value. In the implementation of these functions, you can choose to
//! simply use the reference returned by [`SampleBorrow::borrow`], or you can choose
//! to copy or clone the value, whatever is appropriate for your type.
//!
//! ```
//! use rand::prelude::*;
//! use rand::distr::uniform::{Uniform, SampleUniform,
//!         UniformSampler, UniformFloat, SampleBorrow, Error};
//!
//! struct MyF32(f32);
//!
//! #[derive(Clone, Copy, Debug)]
//! struct UniformMyF32(UniformFloat<f32>);
//!
//! impl UniformSampler for UniformMyF32 {
//!     type X = MyF32;
//!
//!     fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//!         where B1: SampleBorrow<Self::X> + Sized,
//!               B2: SampleBorrow<Self::X> + Sized
//!     {
//!         UniformFloat::<f32>::new(low.borrow().0, high.borrow().0).map(UniformMyF32)
//!     }
//!     fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
//!         where B1: SampleBorrow<Self::X> + Sized,
//!               B2: SampleBorrow<Self::X> + Sized
//!     {
//!         UniformFloat::<f32>::new_inclusive(low.borrow().0, high.borrow().0).map(UniformMyF32)
//!     }
//!     fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
//!         MyF32(self.0.sample(rng))
//!     }
//! }
//!
//! impl SampleUniform for MyF32 {
//!     type Sampler = UniformMyF32;
//! }
//!
//! let (low, high) = (MyF32(17.0f32), MyF32(22.0f32));
//! let uniform = Uniform::new(low, high).unwrap();
//! let x = uniform.sample(&mut thread_rng());
//! ```
//!
//! [`SampleUniform`]: crate::distr::uniform::SampleUniform
//! [`UniformSampler`]: crate::distr::uniform::UniformSampler
//! [`UniformInt`]: crate::distr::uniform::UniformInt
//! [`UniformFloat`]: crate::distr::uniform::UniformFloat
//! [`UniformDuration`]: crate::distr::uniform::UniformDuration
//! [`SampleBorrow::borrow`]: crate::distr::uniform::SampleBorrow::borrow

#[path = "uniform_float.rs"]
mod float;
#[doc(inline)]
pub use float::UniformFloat;

#[path = "uniform_int.rs"]
mod int;
#[doc(inline)]
pub use int::{UniformInt, UniformUsize};

#[path = "uniform_other.rs"]
mod other;
#[doc(inline)]
pub use other::{UniformChar, UniformDuration};

use core::fmt;
use core::ops::{Range, RangeInclusive, RangeTo, RangeToInclusive};

use crate::distr::Distribution;
use crate::{Rng, RngCore};

/// Error type returned from [`Uniform::new`] and `new_inclusive`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `low > high`, or equal in case of exclusive range.
    EmptyRange,
    /// Input or range `high - low` is non-finite. Not relevant to integer types.
    NonFinite,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::EmptyRange => "low > high (or equal if exclusive) in uniform distribution",
            Error::NonFinite => "Non-finite range in uniform distribution",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// Sample values uniformly between two bounds.
///
/// [`Uniform::new`] and [`Uniform::new_inclusive`] construct a uniform
/// distribution sampling from the given range; these functions may do extra
/// work up front to make sampling of multiple values faster. If only one sample
/// from the range is required, [`Rng::gen_range`] can be more efficient.
///
/// When sampling from a constant range, many calculations can happen at
/// compile-time and all methods should be fast; for floating-point ranges and
/// the full range of integer types, this should have comparable performance to
/// the `Standard` distribution.
///
/// Steps are taken to avoid bias, which might be present in naive
/// implementations; for example `rng.gen::<u8>() % 170` samples from the range
/// `[0, 169]` but is twice as likely to select numbers less than 85 than other
/// values. Further, the implementations here give more weight to the high-bits
/// generated by the RNG than the low bits, since with some RNGs the low-bits
/// are of lower quality than the high bits.
///
/// Implementations must sample in `[low, high)` range for
/// `Uniform::new(low, high)`, i.e., excluding `high`. In particular, care must
/// be taken to ensure that rounding never results values `< low` or `>= high`.
///
/// # Example
///
/// ```
/// use rand::distr::{Distribution, Uniform};
///
/// let between = Uniform::try_from(10..10000).unwrap();
/// let mut rng = rand::thread_rng();
/// let mut sum = 0;
/// for _ in 0..1000 {
///     sum += between.sample(&mut rng);
/// }
/// println!("{}", sum);
/// ```
///
/// For a single sample, [`Rng::gen_range`] may be preferred:
///
/// ```
/// use rand::Rng;
///
/// let mut rng = rand::thread_rng();
/// println!("{}", rng.gen_range(0..10));
/// ```
///
/// [`new`]: Uniform::new
/// [`new_inclusive`]: Uniform::new_inclusive
/// [`Rng::gen_range`]: Rng::gen_range
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(bound(serialize = "X::Sampler: Serialize")))]
#[cfg_attr(
    feature = "serde",
    serde(bound(deserialize = "X::Sampler: Deserialize<'de>"))
)]
pub struct Uniform<X: SampleUniform>(X::Sampler);

impl<X: SampleUniform> Uniform<X> {
    /// Create a new `Uniform` instance, which samples uniformly from the half
    /// open range `[low, high)` (excluding `high`).
    ///
    /// For discrete types (e.g. integers), samples will always be strictly less
    /// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
    /// samples may equal `high` due to loss of precision but may not be
    /// greater than `high`.
    ///
    /// Fails if `low >= high`, or if `low`, `high` or the range `high - low` is
    /// non-finite. In release mode, only the range is checked.
    pub fn new<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
    where
        B1: SampleBorrow<X> + Sized,
        B2: SampleBorrow<X> + Sized,
    {
        X::Sampler::new(low, high).map(Uniform)
    }

    /// Create a new `Uniform` instance, which samples uniformly from the closed
    /// range `[low, high]` (inclusive).
    ///
    /// Fails if `low > high`, or if `low`, `high` or the range `high - low` is
    /// non-finite. In release mode, only the range is checked.
    pub fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Uniform<X>, Error>
    where
        B1: SampleBorrow<X> + Sized,
        B2: SampleBorrow<X> + Sized,
    {
        X::Sampler::new_inclusive(low, high).map(Uniform)
    }
}

impl<X: SampleUniform> Distribution<X> for Uniform<X> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> X {
        self.0.sample(rng)
    }
}

/// Helper trait for creating objects using the correct implementation of
/// [`UniformSampler`] for the sampling type.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// [module documentation]: crate::distr::uniform
pub trait SampleUniform: Sized {
    /// The `UniformSampler` implementation supporting type `X`.
    type Sampler: UniformSampler<X = Self>;
}

/// Helper trait handling actual uniform sampling.
///
/// See the [module documentation] on how to implement [`Uniform`] range
/// sampling for a custom type.
///
/// Implementation of [`sample_single`] is optional, and is only useful when
/// the implementation can be faster than `Self::new(low, high).sample(rng)`.
///
/// [module documentation]: crate::distr::uniform
/// [`sample_single`]: UniformSampler::sample_single
pub trait UniformSampler: Sized {
    /// The type sampled by this implementation.
    type X;

    /// Construct self, with inclusive lower bound and exclusive upper bound `[low, high)`.
    ///
    /// For discrete types (e.g. integers), samples will always be strictly less
    /// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
    /// samples may equal `high` due to loss of precision but may not be
    /// greater than `high`.
    ///
    /// Usually users should not call this directly but prefer to use
    /// [`Uniform::new`].
    fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized;

    /// Construct self, with inclusive bounds `[low, high]`.
    ///
    /// Usually users should not call this directly but prefer to use
    /// [`Uniform::new_inclusive`].
    fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized;

    /// Sample a value.
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X;

    /// Sample a single value uniformly from a range with inclusive lower bound
    /// and exclusive upper bound `[low, high)`.
    ///
    /// For discrete types (e.g. integers), samples will always be strictly less
    /// than `high`. For (approximations of) continuous types (e.g. `f32`, `f64`),
    /// samples may equal `high` due to loss of precision but may not be
    /// greater than `high`.
    ///
    /// By default this is implemented using
    /// `UniformSampler::new(low, high).sample(rng)`. However, for some types
    /// more optimal implementations for single usage may be provided via this
    /// method (which is the case for integers and floats).
    /// Results may not be identical.
    ///
    /// Note that to use this method in a generic context, the type needs to be
    /// retrieved via `SampleUniform::Sampler` as follows:
    /// ```
    /// use rand::{thread_rng, distr::uniform::{SampleUniform, UniformSampler}};
    /// # #[allow(unused)]
    /// fn sample_from_range<T: SampleUniform>(lb: T, ub: T) -> T {
    ///     let mut rng = thread_rng();
    ///     <T as SampleUniform>::Sampler::sample_single(lb, ub, &mut rng).unwrap()
    /// }
    /// ```
    fn sample_single<R: Rng + ?Sized, B1, B2>(
        low: B1,
        high: B2,
        rng: &mut R,
    ) -> Result<Self::X, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let uniform: Self = UniformSampler::new(low, high)?;
        Ok(uniform.sample(rng))
    }

    /// Sample a single value uniformly from a range with inclusive lower bound
    /// and inclusive upper bound `[low, high]`.
    ///
    /// By default this is implemented using
    /// `UniformSampler::new_inclusive(low, high).sample(rng)`. However, for
    /// some types more optimal implementations for single usage may be provided
    /// via this method.
    /// Results may not be identical.
    fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
        low: B1,
        high: B2,
        rng: &mut R,
    ) -> Result<Self::X, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let uniform: Self = UniformSampler::new_inclusive(low, high)?;
        Ok(uniform.sample(rng))
    }
}

impl<X: SampleUniform> TryFrom<Range<X>> for Uniform<X> {
    type Error = Error;

    fn try_from(r: Range<X>) -> Result<Uniform<X>, Error> {
        Uniform::new(r.start, r.end)
    }
}

impl<X: SampleUniform> TryFrom<RangeInclusive<X>> for Uniform<X> {
    type Error = Error;

    fn try_from(r: ::core::ops::RangeInclusive<X>) -> Result<Uniform<X>, Error> {
        Uniform::new_inclusive(r.start(), r.end())
    }
}

/// Helper trait similar to [`Borrow`] but implemented
/// only for [`SampleUniform`] and references to [`SampleUniform`]
/// in order to resolve ambiguity issues.
///
/// [`Borrow`]: std::borrow::Borrow
pub trait SampleBorrow<Borrowed> {
    /// Immutably borrows from an owned value. See [`Borrow::borrow`]
    ///
    /// [`Borrow::borrow`]: std::borrow::Borrow::borrow
    fn borrow(&self) -> &Borrowed;
}
impl<Borrowed> SampleBorrow<Borrowed> for Borrowed
where
    Borrowed: SampleUniform,
{
    #[inline(always)]
    fn borrow(&self) -> &Borrowed {
        self
    }
}
impl<'a, Borrowed> SampleBorrow<Borrowed> for &'a Borrowed
where
    Borrowed: SampleUniform,
{
    #[inline(always)]
    fn borrow(&self) -> &Borrowed {
        self
    }
}

/// Range that supports generating a single sample efficiently.
///
/// Any type implementing this trait can be used to specify the sampled range
/// for `Rng::gen_range`.
pub trait SampleRange<T> {
    /// Generate a sample from the given range.
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error>;

    /// Check whether the range is empty.
    fn is_empty(&self) -> bool;
}

impl<T: SampleUniform + PartialOrd> SampleRange<T> for Range<T> {
    #[inline]
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
        T::Sampler::sample_single(self.start, self.end, rng)
    }

    #[inline]
    fn is_empty(&self) -> bool {
        !(self.start < self.end)
    }
}

impl<T: SampleUniform + PartialOrd> SampleRange<T> for RangeInclusive<T> {
    #[inline]
    fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<T, Error> {
        T::Sampler::sample_single_inclusive(self.start(), self.end(), rng)
    }

    #[inline]
    fn is_empty(&self) -> bool {
        !(self.start() <= self.end())
    }
}

macro_rules! impl_sample_range_u {
    ($t:ty) => {
        impl SampleRange<$t> for RangeTo<$t> {
            #[inline]
            fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
                <$t as SampleUniform>::Sampler::sample_single(0, self.end, rng)
            }

            #[inline]
            fn is_empty(&self) -> bool {
                0 == self.end
            }
        }

        impl SampleRange<$t> for RangeToInclusive<$t> {
            #[inline]
            fn sample_single<R: RngCore + ?Sized>(self, rng: &mut R) -> Result<$t, Error> {
                <$t as SampleUniform>::Sampler::sample_single_inclusive(0, self.end, rng)
            }

            #[inline]
            fn is_empty(&self) -> bool {
                false
            }
        }
    };
}

impl_sample_range_u!(u8);
impl_sample_range_u!(u16);
impl_sample_range_u!(u32);
impl_sample_range_u!(u64);
impl_sample_range_u!(u128);
impl_sample_range_u!(usize);

#[cfg(test)]
mod tests {
    use super::*;
    use core::time::Duration;

    #[test]
    #[cfg(feature = "serde")]
    fn test_uniform_serialization() {
        let unit_box: Uniform<i32> = Uniform::new(-1, 1).unwrap();
        let de_unit_box: Uniform<i32> =
            bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
        assert_eq!(unit_box.0, de_unit_box.0);

        let unit_box: Uniform<f32> = Uniform::new(-1., 1.).unwrap();
        let de_unit_box: Uniform<f32> =
            bincode::deserialize(&bincode::serialize(&unit_box).unwrap()).unwrap();
        assert_eq!(unit_box.0, de_unit_box.0);
    }

    #[test]
    fn test_custom_uniform() {
        use crate::distr::uniform::{SampleBorrow, SampleUniform, UniformFloat, UniformSampler};
        #[derive(Clone, Copy, PartialEq, PartialOrd)]
        struct MyF32 {
            x: f32,
        }
        #[derive(Clone, Copy, Debug)]
        struct UniformMyF32(UniformFloat<f32>);
        impl UniformSampler for UniformMyF32 {
            type X = MyF32;

            fn new<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                UniformFloat::<f32>::new(low.borrow().x, high.borrow().x).map(UniformMyF32)
            }

            fn new_inclusive<B1, B2>(low: B1, high: B2) -> Result<Self, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                UniformSampler::new(low, high)
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                MyF32 {
                    x: self.0.sample(rng),
                }
            }
        }
        impl SampleUniform for MyF32 {
            type Sampler = UniformMyF32;
        }

        let (low, high) = (MyF32 { x: 17.0f32 }, MyF32 { x: 22.0f32 });
        let uniform = Uniform::new(low, high).unwrap();
        let mut rng = crate::test::rng(804);
        for _ in 0..100 {
            let x: MyF32 = rng.sample(uniform);
            assert!(low <= x && x < high);
        }
    }

    #[test]
    fn value_stability() {
        fn test_samples<T: SampleUniform + Copy + fmt::Debug + PartialEq>(
            lb: T,
            ub: T,
            expected_single: &[T],
            expected_multiple: &[T],
        ) where
            Uniform<T>: Distribution<T>,
        {
            let mut rng = crate::test::rng(897);
            let mut buf = [lb; 3];

            for x in &mut buf {
                *x = T::Sampler::sample_single(lb, ub, &mut rng).unwrap();
            }
            assert_eq!(&buf, expected_single);

            let distr = Uniform::new(lb, ub).unwrap();
            for x in &mut buf {
                *x = rng.sample(&distr);
            }
            assert_eq!(&buf, expected_multiple);
        }

        test_samples(
            0f32,
            1e-2f32,
            &[0.0003070104, 0.0026630748, 0.00979833],
            &[0.008194133, 0.00398172, 0.007428536],
        );
        test_samples(
            -1e10f64,
            1e10f64,
            &[-4673848682.871551, 6388267422.932352, 4857075081.198343],
            &[1173375212.1808167, 1917642852.109581, 2365076174.3153973],
        );

        test_samples(
            Duration::new(2, 0),
            Duration::new(4, 0),
            &[
                Duration::new(2, 532615131),
                Duration::new(3, 638826742),
                Duration::new(3, 485707508),
            ],
            &[
                Duration::new(3, 117337521),
                Duration::new(3, 191764285),
                Duration::new(3, 236507617),
            ],
        );
    }

    #[test]
    fn uniform_distributions_can_be_compared() {
        assert_eq!(
            Uniform::new(1.0, 2.0).unwrap(),
            Uniform::new(1.0, 2.0).unwrap()
        );

        // To cover UniformInt
        assert_eq!(
            Uniform::new(1_u32, 2_u32).unwrap(),
            Uniform::new(1_u32, 2_u32).unwrap()
        );
    }
}