rand_distr/weibull.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Weibull distribution `Weibull(λ, k)`
use crate::{Distribution, OpenClosed01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [Weibull distribution](https://en.wikipedia.org/wiki/Weibull_distribution) `Weibull(λ, k)`.
///
/// This is a family of continuous probability distributions with
/// scale parameter `λ` (`lambda`) and shape parameter `k`. It is used
/// to model reliability data, life data, and accelerated life testing data.
///
/// # Density function
///
/// `f(x; λ, k) = (k / λ) * (x / λ)^(k - 1) * exp(-(x / λ)^k)` for `x >= 0`.
///
/// # Plot
///
/// The following plot shows the Weibull distribution with various values of `λ` and `k`.
///
/// ![Weibull distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/weibull.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Weibull;
///
/// let val: f64 = rand::rng().sample(Weibull::new(1., 10.).unwrap());
/// println!("{}", val);
/// ```
///
/// # Numerics
///
/// For small `k` like `< 0.005`, even with `f64` a significant number of samples will be so small that they underflow to `0.0`
/// or so big they overflow to `inf`. This is a limitation of the floating point representation and not specific to this implementation.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Weibull<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
inv_shape: F,
scale: F,
}
/// Error type returned from [`Weibull::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `scale <= 0` or `nan`.
ScaleTooSmall,
/// `shape <= 0` or `nan`.
ShapeTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleTooSmall => "scale is not positive in Weibull distribution",
Error::ShapeTooSmall => "shape is not positive in Weibull distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Weibull<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
/// Construct a new `Weibull` distribution with given `scale` and `shape`.
pub fn new(scale: F, shape: F) -> Result<Weibull<F>, Error> {
if !(scale > F::zero()) {
return Err(Error::ScaleTooSmall);
}
if !(shape > F::zero()) {
return Err(Error::ShapeTooSmall);
}
Ok(Weibull {
inv_shape: F::from(1.).unwrap() / shape,
scale,
})
}
}
impl<F> Distribution<F> for Weibull<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let x: F = rng.sample(OpenClosed01);
self.scale * (-x.ln()).powf(self.inv_shape)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn invalid() {
Weibull::new(0., 0.).unwrap();
}
#[test]
fn sample() {
let scale = 1.0;
let shape = 2.0;
let d = Weibull::new(scale, shape).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 0.);
}
}
#[test]
fn value_stability() {
fn test_samples<F: Float + fmt::Debug, D: Distribution<F>>(
distr: D,
zero: F,
expected: &[F],
) {
let mut rng = crate::test::rng(213);
let mut buf = [zero; 4];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
test_samples(
Weibull::new(1.0, 1.0).unwrap(),
0f32,
&[0.041495778, 0.7531094, 1.4189332, 0.38386202],
);
test_samples(
Weibull::new(2.0, 0.5).unwrap(),
0f64,
&[
1.1343478702739669,
0.29470010050655226,
0.7556151370284702,
7.877212340241561,
],
);
}
#[test]
fn weibull_distributions_can_be_compared() {
assert_eq!(Weibull::new(1.0, 2.0), Weibull::new(1.0, 2.0));
}
}