rand_distr/geometric.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
//! The geometric distribution `Geometric(p)`.
use crate::Distribution;
use core::fmt;
#[allow(unused_imports)]
use num_traits::Float;
use rand::Rng;
/// The [geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution) `Geometric(p)`.
///
/// This is the probability distribution of the number of failures
/// (bounded to `[0, u64::MAX]`) before the first success in a
/// series of [`Bernoulli`](crate::Bernoulli) trials, where the
/// probability of success on each trial is `p`.
///
/// This is the discrete analogue of the [exponential distribution](crate::Exp).
///
/// See [`StandardGeometric`](crate::StandardGeometric) for an optimised
/// implementation for `p = 0.5`.
///
/// # Density function
///
/// `f(k) = (1 - p)^k p` for `k >= 0`.
///
/// # Plot
///
/// The following plot illustrates the geometric distribution for various
/// values of `p`. Note how higher `p` values shift the distribution to
/// the left, and the mean of the distribution is `1/p`.
///
/// ![Geometric distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/geometric.svg)
///
/// # Example
/// ```
/// use rand_distr::{Geometric, Distribution};
///
/// let geo = Geometric::new(0.25).unwrap();
/// let v = geo.sample(&mut rand::rng());
/// println!("{} is from a Geometric(0.25) distribution", v);
/// ```
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Geometric {
p: f64,
pi: f64,
k: u64,
}
/// Error type returned from [`Geometric::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `p < 0 || p > 1` or `nan`
InvalidProbability,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::InvalidProbability => {
"p is NaN or outside the interval [0, 1] in geometric distribution"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl Geometric {
/// Construct a new `Geometric` with the given shape parameter `p`
/// (probability of success on each trial).
pub fn new(p: f64) -> Result<Self, Error> {
if !p.is_finite() || !(0.0..=1.0).contains(&p) {
Err(Error::InvalidProbability)
} else if p == 0.0 || p >= 2.0 / 3.0 {
Ok(Geometric { p, pi: p, k: 0 })
} else {
let (pi, k) = {
// choose smallest k such that pi = (1 - p)^(2^k) <= 0.5
let mut k = 1;
let mut pi = (1.0 - p).powi(2);
while pi > 0.5 {
k += 1;
pi = pi * pi;
}
(pi, k)
};
Ok(Geometric { p, pi, k })
}
}
}
impl Distribution<u64> for Geometric {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
if self.p >= 2.0 / 3.0 {
// use the trivial algorithm:
let mut failures = 0;
loop {
let u = rng.random::<f64>();
if u <= self.p {
break;
}
failures += 1;
}
return failures;
}
if self.p == 0.0 {
return u64::MAX;
}
let Geometric { p, pi, k } = *self;
// Based on the algorithm presented in section 3 of
// Karl Bringmann and Tobias Friedrich (July 2013) - Exact and Efficient
// Generation of Geometric Random Variates and Random Graphs, published
// in International Colloquium on Automata, Languages and Programming
// (pp.267-278)
// https://people.mpi-inf.mpg.de/~kbringma/paper/2013ICALP-1.pdf
// Use the trivial algorithm to sample D from Geo(pi) = Geo(p) / 2^k:
let d = {
let mut failures = 0;
while rng.random::<f64>() < pi {
failures += 1;
}
failures
};
// Use rejection sampling for the remainder M from Geo(p) % 2^k:
// choose M uniformly from [0, 2^k), but reject with probability (1 - p)^M
// NOTE: The paper suggests using bitwise sampling here, which is
// currently unsupported, but should improve performance by requiring
// fewer iterations on average. ~ October 28, 2020
let m = loop {
let m = rng.random::<u64>() & ((1 << k) - 1);
let p_reject = if m <= i32::MAX as u64 {
(1.0 - p).powi(m as i32)
} else {
(1.0 - p).powf(m as f64)
};
let u = rng.random::<f64>();
if u < p_reject {
break m;
}
};
(d << k) + m
}
}
/// The standard geometric distribution `Geometric(0.5)`.
///
/// This is equivalent to `Geometric::new(0.5)`, but faster.
///
/// See [`Geometric`](crate::Geometric) for the general geometric distribution.
///
/// # Plot
///
/// The following plot illustrates the standard geometric distribution.
///
/// ![Standard Geometric distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/standard_geometric.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::StandardGeometric;
///
/// let v = StandardGeometric.sample(&mut rand::rng());
/// println!("{} is from a Geometric(0.5) distribution", v);
/// ```
///
/// # Notes
/// Implemented via iterated
/// [`Rng::gen::<u64>().leading_zeros()`](Rng::gen::<u64>().leading_zeros()).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct StandardGeometric;
impl Distribution<u64> for StandardGeometric {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
let mut result = 0;
loop {
let x = rng.random::<u64>().leading_zeros() as u64;
result += x;
if x < 64 {
break;
}
}
result
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_geo_invalid_p() {
assert!(Geometric::new(f64::NAN).is_err());
assert!(Geometric::new(f64::INFINITY).is_err());
assert!(Geometric::new(f64::NEG_INFINITY).is_err());
assert!(Geometric::new(-0.5).is_err());
assert!(Geometric::new(0.0).is_ok());
assert!(Geometric::new(1.0).is_ok());
assert!(Geometric::new(2.0).is_err());
}
fn test_geo_mean_and_variance<R: Rng>(p: f64, rng: &mut R) {
let distr = Geometric::new(p).unwrap();
let expected_mean = (1.0 - p) / p;
let expected_variance = (1.0 - p) / (p * p);
let mut results = [0.0; 10000];
for i in results.iter_mut() {
*i = distr.sample(rng) as f64;
}
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean - expected_mean).abs() < expected_mean / 40.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn test_geometric() {
let mut rng = crate::test::rng(12345);
test_geo_mean_and_variance(0.10, &mut rng);
test_geo_mean_and_variance(0.25, &mut rng);
test_geo_mean_and_variance(0.50, &mut rng);
test_geo_mean_and_variance(0.75, &mut rng);
test_geo_mean_and_variance(0.90, &mut rng);
}
#[test]
fn test_standard_geometric() {
let mut rng = crate::test::rng(654321);
let distr = StandardGeometric;
let expected_mean = 1.0;
let expected_variance = 2.0;
let mut results = [0.0; 1000];
for i in results.iter_mut() {
*i = distr.sample(&mut rng) as f64;
}
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean - expected_mean).abs() < expected_mean / 50.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn geometric_distributions_can_be_compared() {
assert_eq!(Geometric::new(1.0), Geometric::new(1.0));
}
}