1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Distribution trait and associates
use crate::Rng;
#[cfg(feature = "alloc")]
use alloc::string::String;
use core::iter;
/// Types (distributions) that can be used to create a random instance of `T`.
///
/// It is possible to sample from a distribution through both the
/// `Distribution` and [`Rng`] traits, via `distr.sample(&mut rng)` and
/// `rng.sample(distr)`. They also both offer the [`sample_iter`] method, which
/// produces an iterator that samples from the distribution.
///
/// All implementations are expected to be immutable; this has the significant
/// advantage of not needing to consider thread safety, and for most
/// distributions efficient state-less sampling algorithms are available.
///
/// Implementations are typically expected to be portable with reproducible
/// results when used with a PRNG with fixed seed; see the
/// [portability chapter](https://rust-random.github.io/book/portability.html)
/// of The Rust Rand Book. In some cases this does not apply, e.g. the `usize`
/// type requires different sampling on 32-bit and 64-bit machines.
///
/// [`sample_iter`]: Distribution::sample_iter
pub trait Distribution<T> {
/// Generate a random value of `T`, using `rng` as the source of randomness.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T;
/// Create an iterator that generates random values of `T`, using `rng` as
/// the source of randomness.
///
/// Note that this function takes `self` by value. This works since
/// `Distribution<T>` is impl'd for `&D` where `D: Distribution<T>`,
/// however borrowing is not automatic hence `distr.sample_iter(...)` may
/// need to be replaced with `(&distr).sample_iter(...)` to borrow or
/// `(&*distr).sample_iter(...)` to reborrow an existing reference.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distr::{Distribution, Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = Standard.sample_iter(&mut rng).take(16).collect();
///
/// // String:
/// let s: String = Alphanumeric
/// .sample_iter(&mut rng)
/// .take(7)
/// .map(char::from)
/// .collect();
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6).unwrap();
/// let mut roll_die = die_range.sample_iter(&mut rng);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<R>(self, rng: R) -> DistIter<Self, R, T>
where
R: Rng,
Self: Sized,
{
DistIter {
distr: self,
rng,
phantom: core::marker::PhantomData,
}
}
/// Create a distribution of values of 'S' by mapping the output of `Self`
/// through the closure `F`
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::distr::{Distribution, Uniform};
///
/// let mut rng = thread_rng();
///
/// let die = Uniform::new_inclusive(1, 6).unwrap();
/// let even_number = die.map(|num| num % 2 == 0);
/// while !even_number.sample(&mut rng) {
/// println!("Still odd; rolling again!");
/// }
/// ```
fn map<F, S>(self, func: F) -> DistMap<Self, F, T, S>
where
F: Fn(T) -> S,
Self: Sized,
{
DistMap {
distr: self,
func,
phantom: core::marker::PhantomData,
}
}
}
impl<'a, T, D: Distribution<T> + ?Sized> Distribution<T> for &'a D {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
(*self).sample(rng)
}
}
/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
/// This `struct` is created by the [`sample_iter`] method on [`Distribution`].
/// See its documentation for more.
///
/// [`sample_iter`]: Distribution::sample_iter
#[derive(Debug)]
pub struct DistIter<D, R, T> {
distr: D,
rng: R,
phantom: core::marker::PhantomData<T>,
}
impl<D, R, T> Iterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
type Item = T;
#[inline(always)]
fn next(&mut self) -> Option<T> {
// Here, self.rng may be a reference, but we must take &mut anyway.
// Even if sample could take an R: Rng by value, we would need to do this
// since Rng is not copyable and we cannot enforce that this is "reborrowable".
Some(self.distr.sample(&mut self.rng))
}
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::MAX, None)
}
}
impl<D, R, T> iter::FusedIterator for DistIter<D, R, T>
where
D: Distribution<T>,
R: Rng,
{
}
/// A distribution of values of type `S` derived from the distribution `D`
/// by mapping its output of type `T` through the closure `F`.
///
/// This `struct` is created by the [`Distribution::map`] method.
/// See its documentation for more.
#[derive(Debug)]
pub struct DistMap<D, F, T, S> {
distr: D,
func: F,
phantom: core::marker::PhantomData<fn(T) -> S>,
}
impl<D, F, T, S> Distribution<S> for DistMap<D, F, T, S>
where
D: Distribution<T>,
F: Fn(T) -> S,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> S {
(self.func)(self.distr.sample(rng))
}
}
/// `String` sampler
///
/// Sampling a `String` of random characters is not quite the same as collecting
/// a sequence of chars. This trait contains some helpers.
#[cfg(feature = "alloc")]
pub trait DistString {
/// Append `len` random chars to `string`
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize);
/// Generate a `String` of `len` random chars
#[inline]
fn sample_string<R: Rng + ?Sized>(&self, rng: &mut R, len: usize) -> String {
let mut s = String::new();
self.append_string(rng, &mut s, len);
s
}
}
#[cfg(test)]
mod tests {
use crate::distr::{Distribution, Uniform};
use crate::Rng;
#[test]
fn test_distributions_iter() {
use crate::distr::Open01;
let mut rng = crate::test::rng(210);
let distr = Open01;
let mut iter = Distribution::<f32>::sample_iter(distr, &mut rng);
let mut sum: f32 = 0.;
for _ in 0..100 {
sum += iter.next().unwrap();
}
assert!(0. < sum && sum < 100.);
}
#[test]
fn test_distributions_map() {
let dist = Uniform::new_inclusive(0, 5).unwrap().map(|val| val + 15);
let mut rng = crate::test::rng(212);
let val = dist.sample(&mut rng);
assert!((15..=20).contains(&val));
}
#[test]
fn test_make_an_iter() {
fn ten_dice_rolls_other_than_five<R: Rng>(rng: &mut R) -> impl Iterator<Item = i32> + '_ {
Uniform::new_inclusive(1, 6)
.unwrap()
.sample_iter(rng)
.filter(|x| *x != 5)
.take(10)
}
let mut rng = crate::test::rng(211);
let mut count = 0;
for val in ten_dice_rolls_other_than_five(&mut rng) {
assert!((1..=6).contains(&val) && val != 5);
count += 1;
}
assert_eq!(count, 10);
}
#[test]
#[cfg(feature = "alloc")]
fn test_dist_string() {
use crate::distr::{Alphanumeric, DistString, Standard};
use core::str;
let mut rng = crate::test::rng(213);
let s1 = Alphanumeric.sample_string(&mut rng, 20);
assert_eq!(s1.len(), 20);
assert_eq!(str::from_utf8(s1.as_bytes()), Ok(s1.as_str()));
let s2 = Standard.sample_string(&mut rng, 20);
assert_eq!(s2.chars().count(), 20);
assert_eq!(str::from_utf8(s2.as_bytes()), Ok(s2.as_str()));
}
}