1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use crate::{Distribution, InverseGaussian, Standard, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;

/// Error type returned from [`NormalInverseGaussian::new`]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Error {
    /// `alpha <= 0` or `nan`.
    AlphaNegativeOrNull,
    /// `|beta| >= alpha` or `nan`.
    AbsoluteBetaNotLessThanAlpha,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::AlphaNegativeOrNull => {
                "alpha <= 0 or is NaN in normal inverse Gaussian distribution"
            }
            Error::AbsoluteBetaNotLessThanAlpha => {
                "|beta| >= alpha or is NaN in normal inverse Gaussian distribution"
            }
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

/// The [normal-inverse Gaussian distribution](https://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution) `NIG(α, β)`.
///
/// This is a continuous probability distribution with two parameters,
/// `α` (`alpha`) and `β` (`beta`), defined in `(-∞, ∞)`.
/// It is also known as the normal-Wald distribution.
///
/// # Plot
///
/// The following plot shows the normal-inverse Gaussian distribution with various values of `α` and `β`.
///
/// ![Normal-inverse Gaussian distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/normal_inverse_gaussian.svg)
///
/// # Example
/// ```
/// use rand_distr::{NormalInverseGaussian, Distribution};
///
/// let norm_inv_gauss = NormalInverseGaussian::new(2.0, 1.0).unwrap();
/// let v = norm_inv_gauss.sample(&mut rand::thread_rng());
/// println!("{} is from a normal-inverse Gaussian(2, 1) distribution", v);
/// ```
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct NormalInverseGaussian<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Standard: Distribution<F>,
{
    beta: F,
    inverse_gaussian: InverseGaussian<F>,
}

impl<F> NormalInverseGaussian<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Standard: Distribution<F>,
{
    /// Construct a new `NormalInverseGaussian` distribution with the given alpha (tail heaviness) and
    /// beta (asymmetry) parameters.
    pub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error> {
        if !(alpha > F::zero()) {
            return Err(Error::AlphaNegativeOrNull);
        }

        if !(beta.abs() < alpha) {
            return Err(Error::AbsoluteBetaNotLessThanAlpha);
        }

        let gamma = (alpha * alpha - beta * beta).sqrt();

        let mu = F::one() / gamma;

        let inverse_gaussian = InverseGaussian::new(mu, F::one()).unwrap();

        Ok(Self {
            beta,
            inverse_gaussian,
        })
    }
}

impl<F> Distribution<F> for NormalInverseGaussian<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Standard: Distribution<F>,
{
    fn sample<R>(&self, rng: &mut R) -> F
    where
        R: Rng + ?Sized,
    {
        let inv_gauss = rng.sample(self.inverse_gaussian);

        self.beta * inv_gauss + inv_gauss.sqrt() * rng.sample(StandardNormal)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_normal_inverse_gaussian() {
        let norm_inv_gauss = NormalInverseGaussian::new(2.0, 1.0).unwrap();
        let mut rng = crate::test::rng(210);
        for _ in 0..1000 {
            norm_inv_gauss.sample(&mut rng);
        }
    }

    #[test]
    fn test_normal_inverse_gaussian_invalid_param() {
        assert!(NormalInverseGaussian::new(-1.0, 1.0).is_err());
        assert!(NormalInverseGaussian::new(-1.0, -1.0).is_err());
        assert!(NormalInverseGaussian::new(1.0, 2.0).is_err());
        assert!(NormalInverseGaussian::new(2.0, 1.0).is_ok());
    }

    #[test]
    fn normal_inverse_gaussian_distributions_can_be_compared() {
        assert_eq!(
            NormalInverseGaussian::new(1.0, 2.0),
            NormalInverseGaussian::new(1.0, 2.0)
        );
    }
}