use crate::{Distribution, InverseGaussian, Standard, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Error {
AlphaNegativeOrNull,
AbsoluteBetaNotLessThanAlpha,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::AlphaNegativeOrNull => {
"alpha <= 0 or is NaN in normal inverse Gaussian distribution"
}
Error::AbsoluteBetaNotLessThanAlpha => {
"|beta| >= alpha or is NaN in normal inverse Gaussian distribution"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
beta: F,
inverse_gaussian: InverseGaussian<F>,
}
impl<F> NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
pub fn new(alpha: F, beta: F) -> Result<NormalInverseGaussian<F>, Error> {
if !(alpha > F::zero()) {
return Err(Error::AlphaNegativeOrNull);
}
if !(beta.abs() < alpha) {
return Err(Error::AbsoluteBetaNotLessThanAlpha);
}
let gamma = (alpha * alpha - beta * beta).sqrt();
let mu = F::one() / gamma;
let inverse_gaussian = InverseGaussian::new(mu, F::one()).unwrap();
Ok(Self {
beta,
inverse_gaussian,
})
}
}
impl<F> Distribution<F> for NormalInverseGaussian<F>
where
F: Float,
StandardNormal: Distribution<F>,
Standard: Distribution<F>,
{
fn sample<R>(&self, rng: &mut R) -> F
where
R: Rng + ?Sized,
{
let inv_gauss = rng.sample(self.inverse_gaussian);
self.beta * inv_gauss + inv_gauss.sqrt() * rng.sample(StandardNormal)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_normal_inverse_gaussian() {
let norm_inv_gauss = NormalInverseGaussian::new(2.0, 1.0).unwrap();
let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm_inv_gauss.sample(&mut rng);
}
}
#[test]
fn test_normal_inverse_gaussian_invalid_param() {
assert!(NormalInverseGaussian::new(-1.0, 1.0).is_err());
assert!(NormalInverseGaussian::new(-1.0, -1.0).is_err());
assert!(NormalInverseGaussian::new(1.0, 2.0).is_err());
assert!(NormalInverseGaussian::new(2.0, 1.0).is_ok());
}
#[test]
fn normal_inverse_gaussian_distributions_can_be_compared() {
assert_eq!(
NormalInverseGaussian::new(1.0, 2.0),
NormalInverseGaussian::new(1.0, 2.0)
);
}
}