rand_distr/student_t.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Student's t-distribution.
use crate::{ChiSquared, ChiSquaredError};
use crate::{Distribution, Exp1, Open01, StandardNormal};
use num_traits::Float;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// The [Student t-distribution](https://en.wikipedia.org/wiki/Student%27s_t-distribution) `t(ν)`.
///
/// The t-distribution is a continuous probability distribution
/// parameterized by degrees of freedom `ν` (`nu`), which
/// arises when estimating the mean of a normally-distributed
/// population in situations where the sample size is small and
/// the population's standard deviation is unknown.
/// It is widely used in hypothesis testing.
///
/// For `ν = 1`, this is equivalent to the standard
/// [`Cauchy`](crate::Cauchy) distribution,
/// and as `ν` diverges to infinity, `t(ν)` converges to
/// [`StandardNormal`](crate::StandardNormal).
///
/// # Plot
///
/// The plot shows the t-distribution with various degrees of freedom.
///
/// ![T-distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/student_t.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{StudentT, Distribution};
///
/// let t = StudentT::new(11.0).unwrap();
/// let v = t.sample(&mut rand::rng());
/// println!("{} is from a t(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
chi: ChiSquared<F>,
dof: F,
}
impl<F> StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new Student t-distribution with `ν` (nu)
/// degrees of freedom.
pub fn new(nu: F) -> Result<StudentT<F>, ChiSquaredError> {
Ok(StudentT {
chi: ChiSquared::new(nu)?,
dof: nu,
})
}
}
impl<F> Distribution<F> for StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let norm: F = rng.sample(StandardNormal);
norm * (self.dof / self.chi.sample(rng)).sqrt()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_t() {
let t = StudentT::new(11.0).unwrap();
let mut rng = crate::test::rng(205);
for _ in 0..1000 {
t.sample(&mut rng);
}
}
#[test]
fn student_t_distributions_can_be_compared() {
assert_eq!(StudentT::new(1.0), StudentT::new(1.0));
}
}