rand_distr/chi_squared.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Chi-squared distribution.
use self::ChiSquaredRepr::*;
use crate::{Distribution, Exp1, Gamma, Open01, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// The [chi-squared distribution](https://en.wikipedia.org/wiki/Chi-squared_distribution) `χ²(k)`.
///
/// The chi-squared distribution is a continuous probability
/// distribution with parameter `k > 0` degrees of freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
///
/// # Plot
///
/// The plot shows the chi-squared distribution with various degrees
/// of freedom.
///
/// ![Chi-squared distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/chi_squared.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{ChiSquared, Distribution};
///
/// let chi = ChiSquared::new(11.0).unwrap();
/// let v = chi.sample(&mut rand::rng());
/// println!("{} is from a χ²(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
repr: ChiSquaredRepr<F>,
}
/// Error type returned from [`ChiSquared::new`] and [`StudentT::new`](crate::StudentT::new).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Error {
/// `0.5 * k <= 0` or `nan`.
DoFTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::DoFTooSmall => {
"degrees-of-freedom k is not positive in chi-squared distribution"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
enum ChiSquaredRepr<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
// k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
// e.g. when alpha = 1/2 as it would be for this case, so special-
// casing and using the definition of N(0,1)^2 is faster.
DoFExactlyOne,
DoFAnythingElse(Gamma<F>),
}
impl<F> ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new chi-squared distribution with degrees-of-freedom
/// `k`.
pub fn new(k: F) -> Result<ChiSquared<F>, Error> {
let repr = if k == F::one() {
DoFExactlyOne
} else {
if !(F::from(0.5).unwrap() * k > F::zero()) {
return Err(Error::DoFTooSmall);
}
DoFAnythingElse(Gamma::new(F::from(0.5).unwrap() * k, F::from(2.0).unwrap()).unwrap())
};
Ok(ChiSquared { repr })
}
}
impl<F> Distribution<F> for ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match self.repr {
DoFExactlyOne => {
// k == 1 => N(0,1)^2
let norm: F = rng.sample(StandardNormal);
norm * norm
}
DoFAnythingElse(ref g) => g.sample(rng),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_chi_squared_one() {
let chi = ChiSquared::new(1.0).unwrap();
let mut rng = crate::test::rng(201);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let chi = ChiSquared::new(0.5).unwrap();
let mut rng = crate::test::rng(202);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let chi = ChiSquared::new(30.0).unwrap();
let mut rng = crate::test::rng(203);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0).unwrap();
}
#[test]
fn gamma_distributions_can_be_compared() {
assert_eq!(Gamma::new(1.0, 2.0), Gamma::new(1.0, 2.0));
}
#[test]
fn chi_squared_distributions_can_be_compared() {
assert_eq!(ChiSquared::new(1.0), ChiSquared::new(1.0));
}
}