1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Fisher F-distribution.
use crate::{ChiSquared, Distribution, Exp1, Open01, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// The [Fisher F-distribution](https://en.wikipedia.org/wiki/F-distribution) `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
///
/// # Plot
///
/// The plot shows the F-distribution with various values of `m` and `n`.
///
/// ![F-distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/fisher_f.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{FisherF, Distribution};
///
/// let f = FisherF::new(2.0, 32.0).unwrap();
/// let v = f.sample(&mut rand::thread_rng());
/// println!("{} is from an F(2, 32) distribution", v)
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
numer: ChiSquared<F>,
denom: ChiSquared<F>,
// denom_dof / numer_dof so that this can just be a straight
// multiplication, rather than a division.
dof_ratio: F,
}
/// Error type returned from [`FisherF::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Error {
/// `m <= 0` or `nan`.
MTooSmall,
/// `n <= 0` or `nan`.
NTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::MTooSmall => "m is not positive in Fisher F distribution",
Error::NTooSmall => "n is not positive in Fisher F distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new `FisherF` distribution, with the given parameter.
pub fn new(m: F, n: F) -> Result<FisherF<F>, Error> {
let zero = F::zero();
if !(m > zero) {
return Err(Error::MTooSmall);
}
if !(n > zero) {
return Err(Error::NTooSmall);
}
Ok(FisherF {
numer: ChiSquared::new(m).unwrap(),
denom: ChiSquared::new(n).unwrap(),
dof_ratio: n / m,
})
}
}
impl<F> Distribution<F> for FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_f() {
let f = FisherF::new(2.0, 32.0).unwrap();
let mut rng = crate::test::rng(204);
for _ in 0..1000 {
f.sample(&mut rng);
}
}
#[test]
fn fisher_f_distributions_can_be_compared() {
assert_eq!(FisherF::new(1.0, 2.0), FisherF::new(1.0, 2.0));
}
}