rand_distr/
poisson.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Poisson distribution `Poisson(λ)`.

use crate::{Distribution, Exp1, Normal, StandardNormal, StandardUniform};
use core::fmt;
use num_traits::{Float, FloatConst};
use rand::Rng;

/// The [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution) `Poisson(λ)`.
///
/// The Poisson distribution is a discrete probability distribution with
/// rate parameter `λ` (`lambda`). It models the number of events occurring in a fixed
/// interval of time or space.
///
/// This distribution has density function:
/// `f(k) = λ^k * exp(-λ) / k!` for `k >= 0`.
///
/// # Plot
///
/// The following plot shows the Poisson distribution with various values of `λ`.
/// Note how the expected number of events increases with `λ`.
///
/// ![Poisson distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/poisson.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v: f64 = poi.sample(&mut rand::rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
///
/// # Integer vs FP return type
///
/// This implementation uses floating-point (FP) logic internally.
///
/// Due to the parameter limit <code>λ < [Self::MAX_LAMBDA]</code>, it
/// statistically impossible to sample a value larger [`u64::MAX`]. As such, it
/// is reasonable to cast generated samples to `u64` using `as`:
/// `distr.sample(&mut rng) as u64` (and memory safe since Rust 1.45).
/// Similarly, when `λ < 4.2e9` it can be safely assumed that samples are less
/// than `u32::MAX`.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Poisson<F>(Method<F>)
where
    F: Float + FloatConst,
    StandardUniform: Distribution<F>;

/// Error type returned from [`Poisson::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `lambda <= 0`
    ShapeTooSmall,
    /// `lambda = ∞` or `lambda = nan`
    NonFinite,
    /// `lambda` is too large, see [Poisson::MAX_LAMBDA]
    ShapeTooLarge,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
            Error::NonFinite => "lambda is infinite or nan in Poisson distribution",
            Error::ShapeTooLarge => {
                "lambda is too large in Poisson distribution, see Poisson::MAX_LAMBDA"
            }
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub(crate) struct KnuthMethod<F> {
    exp_lambda: F,
}

impl<F: Float> KnuthMethod<F> {
    pub(crate) fn new(lambda: F) -> Self {
        KnuthMethod {
            exp_lambda: (-lambda).exp(),
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct RejectionMethod<F> {
    lambda: F,
    s: F,
    d: F,
    l: F,
    c: F,
    c0: F,
    c1: F,
    c2: F,
    c3: F,
    omega: F,
}

impl<F: Float + FloatConst> RejectionMethod<F> {
    pub(crate) fn new(lambda: F) -> Self {
        let b1 = F::from(1.0 / 24.0).unwrap() / lambda;
        let b2 = F::from(0.3).unwrap() * b1 * b1;
        let c3 = F::from(1.0 / 7.0).unwrap() * b1 * b2;
        let c2 = b2 - F::from(15).unwrap() * c3;
        let c1 = b1 - F::from(6).unwrap() * b2 + F::from(45).unwrap() * c3;
        let c0 = F::one() - b1 + F::from(3).unwrap() * b2 - F::from(15).unwrap() * c3;

        RejectionMethod {
            lambda,
            s: lambda.sqrt(),
            d: F::from(6.0).unwrap() * lambda.powi(2),
            l: (lambda - F::from(1.1484).unwrap()).floor(),
            c: F::from(0.1069).unwrap() / lambda,
            c0,
            c1,
            c2,
            c3,
            omega: F::one() / (F::from(2).unwrap() * F::PI()).sqrt() / lambda.sqrt(),
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
enum Method<F> {
    Knuth(KnuthMethod<F>),
    Rejection(RejectionMethod<F>),
}

impl<F> Poisson<F>
where
    F: Float + FloatConst,
    StandardUniform: Distribution<F>,
{
    /// Construct a new `Poisson` with the given shape parameter
    /// `lambda`.
    ///
    /// The maximum allowed lambda is [MAX_LAMBDA](Self::MAX_LAMBDA).
    pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
        if !lambda.is_finite() {
            return Err(Error::NonFinite);
        }
        if !(lambda > F::zero()) {
            return Err(Error::ShapeTooSmall);
        }

        // Use the Knuth method only for low expected values
        let method = if lambda < F::from(12.0).unwrap() {
            Method::Knuth(KnuthMethod::new(lambda))
        } else {
            if lambda > F::from(Self::MAX_LAMBDA).unwrap() {
                return Err(Error::ShapeTooLarge);
            }
            Method::Rejection(RejectionMethod::new(lambda))
        };

        Ok(Poisson(method))
    }

    /// The maximum supported value of `lambda`
    ///
    /// This value was selected such that
    /// `MAX_LAMBDA + 1e6 * sqrt(MAX_LAMBDA) < 2^64 - 1`,
    /// thus ensuring that the probability of sampling a value larger than
    /// `u64::MAX` is less than 1e-1000.
    ///
    /// Applying this limit also solves
    /// [#1312](https://github.com/rust-random/rand/issues/1312).
    pub const MAX_LAMBDA: f64 = 1.844e19;
}

impl<F> Distribution<F> for KnuthMethod<F>
where
    F: Float + FloatConst,
    StandardUniform: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let mut result = F::one();
        let mut p = rng.random::<F>();
        while p > self.exp_lambda {
            p = p * rng.random::<F>();
            result = result + F::one();
        }
        result - F::one()
    }
}

impl<F> Distribution<F> for RejectionMethod<F>
where
    F: Float + FloatConst,
    StandardUniform: Distribution<F>,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        // The algorithm is based on:
        // J. H. Ahrens and U. Dieter. 1982.
        // Computer Generation of Poisson Deviates from Modified Normal Distributions.
        // ACM Trans. Math. Softw. 8, 2 (June 1982), 163–179. https://doi.org/10.1145/355993.355997

        // Step F
        let f = |k: F| {
            const FACT: [f64; 10] = [
                1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
            ]; // factorial of 0..10
            const A: [f64; 10] = [
                -0.5000000002,
                0.3333333343,
                -0.2499998565,
                0.1999997049,
                -0.1666848753,
                0.1428833286,
                -0.1241963125,
                0.1101687109,
                -0.1142650302,
                0.1055093006,
            ]; // coefficients from Table 1
            let (px, py) = if k < F::from(10.0).unwrap() {
                let px = -self.lambda;
                let py = self.lambda.powf(k) / F::from(FACT[k.to_usize().unwrap()]).unwrap();

                (px, py)
            } else {
                let delta = (F::from(12.0).unwrap() * k).recip();
                let delta = delta - F::from(4.8).unwrap() * delta.powi(3);
                let v = (self.lambda - k) / k;

                let px = if v.abs() <= F::from(0.25).unwrap() {
                    k * v.powi(2)
                        * A.iter()
                            .rev()
                            .fold(F::zero(), |acc, &a| {
                                acc * v + F::from(a).unwrap()
                            }) // Σ a_i * v^i
                        - delta
                } else {
                    k * (F::one() + v).ln() - (self.lambda - k) - delta
                };

                let py = F::one() / (F::from(2.0).unwrap() * F::PI()).sqrt() / k.sqrt();

                (px, py)
            };

            let x = (k - self.lambda + F::from(0.5).unwrap()) / self.s;
            let fx = -F::from(0.5).unwrap() * x * x;
            let fy =
                self.omega * (((self.c3 * x * x + self.c2) * x * x + self.c1) * x * x + self.c0);

            (px, py, fx, fy)
        };

        // Step N
        let normal = Normal::new(self.lambda, self.s).unwrap();
        let g = normal.sample(rng);
        if g >= F::zero() {
            let k1 = g.floor();

            // Step I
            if k1 >= self.l {
                return k1;
            }

            // Step S
            let u: F = rng.random();
            if self.d * u >= (self.lambda - k1).powi(3) {
                return k1;
            }

            let (px, py, fx, fy) = f(k1);

            if fy * (F::one() - u) <= py * (px - fx).exp() {
                return k1;
            }
        }

        loop {
            // Step E
            let e = Exp1.sample(rng);
            let u: F = rng.random() * F::from(2.0).unwrap() - F::one();
            let t = F::from(1.8).unwrap() + e * u.signum();
            if t > F::from(-0.6744).unwrap() {
                let k2 = (self.lambda + self.s * t).floor();
                let (px, py, fx, fy) = f(k2);
                // Step H
                if self.c * u.abs() <= py * (px + e).exp() - fy * (fx + e).exp() {
                    return k2;
                }
            }
        }
    }
}

impl<F> Distribution<F> for Poisson<F>
where
    F: Float + FloatConst,
    StandardUniform: Distribution<F>,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        match &self.0 {
            Method::Knuth(method) => method.sample(rng),
            Method::Rejection(method) => method.sample(rng),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_zero() {
        Poisson::new(0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_infinity() {
        Poisson::new(f64::INFINITY).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_poisson_invalid_lambda_neg() {
        Poisson::new(-10.0).unwrap();
    }

    #[test]
    fn poisson_distributions_can_be_compared() {
        assert_eq!(Poisson::new(1.0), Poisson::new(1.0));
    }
}