1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Poisson distribution `Poisson(λ)`.
use crate::{Cauchy, Distribution, Standard};
use core::fmt;
use num_traits::{Float, FloatConst};
use rand::Rng;
/// The [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution) `Poisson(λ)`.
///
/// The Poisson distribution is a discrete probability distribution with
/// rate parameter `λ` (`lambda`). It models the number of events occurring in a fixed
/// interval of time or space.
///
/// This distribution has density function:
/// `f(k) = λ^k * exp(-λ) / k!` for `k >= 0`.
///
/// # Known issues
///
/// See documentation of [`Poisson::new`].
///
/// # Plot
///
/// The following plot shows the Poisson distribution with various values of `λ`.
/// Note how the expected number of events increases with `λ`.
///
/// ![Poisson distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/poisson.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v = poi.sample(&mut rand::thread_rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Poisson<F>
where
F: Float + FloatConst,
Standard: Distribution<F>,
{
lambda: F,
// precalculated values
exp_lambda: F,
log_lambda: F,
sqrt_2lambda: F,
magic_val: F,
}
/// Error type returned from [`Poisson::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
// Marked non_exhaustive to allow a new error code in the solution to #1312.
#[non_exhaustive]
pub enum Error {
/// `lambda <= 0`
ShapeTooSmall,
/// `lambda = ∞` or `lambda = nan`
NonFinite,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
Error::NonFinite => "lambda is infinite or nan in Poisson distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Poisson<F>
where
F: Float + FloatConst,
Standard: Distribution<F>,
{
/// Construct a new `Poisson` with the given shape parameter
/// `lambda`.
///
/// # Known issues
///
/// Although this method should return an [`Error`] on invalid parameters,
/// some (extreme) values of `lambda` are known to return a [`Poisson`]
/// object which hangs when [sampled](Distribution::sample).
/// Large (less extreme) values of `lambda` may result in successful
/// sampling but with reduced precision.
/// See [#1312](https://github.com/rust-random/rand/issues/1312).
pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
if !lambda.is_finite() {
return Err(Error::NonFinite);
}
if !(lambda > F::zero()) {
return Err(Error::ShapeTooSmall);
}
let log_lambda = lambda.ln();
Ok(Poisson {
lambda,
exp_lambda: (-lambda).exp(),
log_lambda,
sqrt_2lambda: (F::from(2.0).unwrap() * lambda).sqrt(),
magic_val: lambda * log_lambda - crate::utils::log_gamma(F::one() + lambda),
})
}
}
impl<F> Distribution<F> for Poisson<F>
where
F: Float + FloatConst,
Standard: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// using the algorithm from Numerical Recipes in C
// for low expected values use the Knuth method
if self.lambda < F::from(12.0).unwrap() {
let mut result = F::one();
let mut p = rng.random::<F>();
while p > self.exp_lambda {
p = p * rng.random::<F>();
result = result + F::one();
}
result - F::one()
}
// high expected values - rejection method
else {
// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(F::zero(), F::one()).unwrap();
let mut result;
loop {
let mut comp_dev;
loop {
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison distribution
result = self.sqrt_2lambda * comp_dev + self.lambda;
// repeat the drawing until we are in the range of possible values
if result >= F::zero() {
break;
}
}
// now the result is a random variable greater than 0 with Cauchy distribution
// the result should be an integer value
result = result.floor();
// this is the ratio of the Poisson distribution to the comparison distribution
// the magic value scales the distribution function to a range of approximately 0-1
// since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
// this doesn't change the resulting distribution, only increases the rate of failed drawings
let check = F::from(0.9).unwrap()
* (F::one() + comp_dev * comp_dev)
* (result * self.log_lambda
- crate::utils::log_gamma(F::one() + result)
- self.magic_val)
.exp();
// check with uniform random value - if below the threshold, we are within the target distribution
if rng.random::<F>() <= check {
break;
}
}
result
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn test_poisson_avg_gen<F: Float + FloatConst>(lambda: F, tol: F)
where
Standard: Distribution<F>,
{
let poisson = Poisson::new(lambda).unwrap();
let mut rng = crate::test::rng(123);
let mut sum = F::zero();
for _ in 0..1000 {
sum = sum + poisson.sample(&mut rng);
}
let avg = sum / F::from(1000.0).unwrap();
assert!((avg - lambda).abs() < tol);
}
#[test]
fn test_poisson_avg() {
test_poisson_avg_gen::<f64>(10.0, 0.1);
test_poisson_avg_gen::<f64>(15.0, 0.1);
test_poisson_avg_gen::<f32>(10.0, 0.1);
test_poisson_avg_gen::<f32>(15.0, 0.1);
// Small lambda will use Knuth's method with exp_lambda == 1.0
test_poisson_avg_gen::<f32>(0.00000000000000005, 0.1);
test_poisson_avg_gen::<f64>(0.00000000000000005, 0.1);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_infinity() {
Poisson::new(f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0).unwrap();
}
#[test]
fn poisson_distributions_can_be_compared() {
assert_eq!(Poisson::new(1.0), Poisson::new(1.0));
}
}