rand_distr/poisson.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Poisson distribution `Poisson(λ)`.
use crate::{Cauchy, Distribution, StandardUniform};
use core::fmt;
use num_traits::{Float, FloatConst};
use rand::Rng;
/// The [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution) `Poisson(λ)`.
///
/// The Poisson distribution is a discrete probability distribution with
/// rate parameter `λ` (`lambda`). It models the number of events occurring in a fixed
/// interval of time or space.
///
/// This distribution has density function:
/// `f(k) = λ^k * exp(-λ) / k!` for `k >= 0`.
///
/// # Plot
///
/// The following plot shows the Poisson distribution with various values of `λ`.
/// Note how the expected number of events increases with `λ`.
///
/// ![Poisson distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/poisson.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v: f64 = poi.sample(&mut rand::rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
///
/// # Integer vs FP return type
///
/// This implementation uses floating-point (FP) logic internally.
///
/// Due to the parameter limit <code>λ < [Self::MAX_LAMBDA]</code>, it
/// statistically impossible to sample a value larger [`u64::MAX`]. As such, it
/// is reasonable to cast generated samples to `u64` using `as`:
/// `distr.sample(&mut rng) as u64` (and memory safe since Rust 1.45).
/// Similarly, when `λ < 4.2e9` it can be safely assumed that samples are less
/// than `u32::MAX`.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Poisson<F>(Method<F>)
where
F: Float + FloatConst,
StandardUniform: Distribution<F>;
/// Error type returned from [`Poisson::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `lambda <= 0`
ShapeTooSmall,
/// `lambda = ∞` or `lambda = nan`
NonFinite,
/// `lambda` is too large, see [Poisson::MAX_LAMBDA]
ShapeTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
Error::NonFinite => "lambda is infinite or nan in Poisson distribution",
Error::ShapeTooLarge => {
"lambda is too large in Poisson distribution, see Poisson::MAX_LAMBDA"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub(crate) struct KnuthMethod<F> {
exp_lambda: F,
}
impl<F: Float> KnuthMethod<F> {
pub(crate) fn new(lambda: F) -> Self {
KnuthMethod {
exp_lambda: (-lambda).exp(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct RejectionMethod<F> {
lambda: F,
log_lambda: F,
sqrt_2lambda: F,
magic_val: F,
}
impl<F: Float> RejectionMethod<F> {
pub(crate) fn new(lambda: F) -> Self {
let log_lambda = lambda.ln();
let sqrt_2lambda = (F::from(2.0).unwrap() * lambda).sqrt();
let magic_val = lambda * log_lambda - crate::utils::log_gamma(F::one() + lambda);
RejectionMethod {
lambda,
log_lambda,
sqrt_2lambda,
magic_val,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
enum Method<F> {
Knuth(KnuthMethod<F>),
Rejection(RejectionMethod<F>),
}
impl<F> Poisson<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
/// Construct a new `Poisson` with the given shape parameter
/// `lambda`.
///
/// The maximum allowed lambda is [MAX_LAMBDA](Self::MAX_LAMBDA).
pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
if !lambda.is_finite() {
return Err(Error::NonFinite);
}
if !(lambda > F::zero()) {
return Err(Error::ShapeTooSmall);
}
// Use the Knuth method only for low expected values
let method = if lambda < F::from(12.0).unwrap() {
Method::Knuth(KnuthMethod::new(lambda))
} else {
if lambda > F::from(Self::MAX_LAMBDA).unwrap() {
return Err(Error::ShapeTooLarge);
}
Method::Rejection(RejectionMethod::new(lambda))
};
Ok(Poisson(method))
}
/// The maximum supported value of `lambda`
///
/// This value was selected such that
/// `MAX_LAMBDA + 1e6 * sqrt(MAX_LAMBDA) < 2^64 - 1`,
/// thus ensuring that the probability of sampling a value larger than
/// `u64::MAX` is less than 1e-1000.
///
/// Applying this limit also solves
/// [#1312](https://github.com/rust-random/rand/issues/1312).
pub const MAX_LAMBDA: f64 = 1.844e19;
}
impl<F> Distribution<F> for KnuthMethod<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let mut result = F::one();
let mut p = rng.random::<F>();
while p > self.exp_lambda {
p = p * rng.random::<F>();
result = result + F::one();
}
result - F::one()
}
}
impl<F> Distribution<F> for RejectionMethod<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// The algorithm from Numerical Recipes in C
// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(F::zero(), F::one()).unwrap();
let mut result;
loop {
let mut comp_dev;
loop {
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison distribution
result = self.sqrt_2lambda * comp_dev + self.lambda;
// repeat the drawing until we are in the range of possible values
if result >= F::zero() {
break;
}
}
// now the result is a random variable greater than 0 with Cauchy distribution
// the result should be an integer value
result = result.floor();
// this is the ratio of the Poisson distribution to the comparison distribution
// the magic value scales the distribution function to a range of approximately 0-1
// since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
// this doesn't change the resulting distribution, only increases the rate of failed drawings
let check = F::from(0.9).unwrap()
* (F::one() + comp_dev * comp_dev)
* (result * self.log_lambda
- crate::utils::log_gamma(F::one() + result)
- self.magic_val)
.exp();
// check with uniform random value - if below the threshold, we are within the target distribution
if rng.random::<F>() <= check {
break;
}
}
result
}
}
impl<F> Distribution<F> for Poisson<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match &self.0 {
Method::Knuth(method) => method.sample(rng),
Method::Rejection(method) => method.sample(rng),
}
}
}
#[cfg(test)]
mod test {
use super::*;
fn test_poisson_avg_gen<F: Float + FloatConst>(lambda: F, tol: F)
where
StandardUniform: Distribution<F>,
{
let poisson = Poisson::new(lambda).unwrap();
let mut rng = crate::test::rng(123);
let mut sum = F::zero();
for _ in 0..1000 {
sum = sum + poisson.sample(&mut rng);
}
let avg = sum / F::from(1000.0).unwrap();
assert!((avg - lambda).abs() < tol);
}
#[test]
fn test_poisson_avg() {
test_poisson_avg_gen::<f64>(10.0, 0.1);
test_poisson_avg_gen::<f64>(15.0, 0.1);
test_poisson_avg_gen::<f32>(10.0, 0.1);
test_poisson_avg_gen::<f32>(15.0, 0.1);
// Small lambda will use Knuth's method with exp_lambda == 1.0
test_poisson_avg_gen::<f32>(0.00000000000000005, 0.1);
test_poisson_avg_gen::<f64>(0.00000000000000005, 0.1);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_infinity() {
Poisson::new(f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0).unwrap();
}
#[test]
fn poisson_distributions_can_be_compared() {
assert_eq!(Poisson::new(1.0), Poisson::new(1.0));
}
}