rand_distr/poisson.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Poisson distribution `Poisson(λ)`.
use crate::{Distribution, Exp1, Normal, StandardNormal, StandardUniform};
use core::fmt;
use num_traits::{Float, FloatConst};
use rand::Rng;
/// The [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution) `Poisson(λ)`.
///
/// The Poisson distribution is a discrete probability distribution with
/// rate parameter `λ` (`lambda`). It models the number of events occurring in a fixed
/// interval of time or space.
///
/// This distribution has density function:
/// `f(k) = λ^k * exp(-λ) / k!` for `k >= 0`.
///
/// # Plot
///
/// The following plot shows the Poisson distribution with various values of `λ`.
/// Note how the expected number of events increases with `λ`.
///
/// ![Poisson distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/poisson.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Poisson, Distribution};
///
/// let poi = Poisson::new(2.0).unwrap();
/// let v: f64 = poi.sample(&mut rand::rng());
/// println!("{} is from a Poisson(2) distribution", v);
/// ```
///
/// # Integer vs FP return type
///
/// This implementation uses floating-point (FP) logic internally.
///
/// Due to the parameter limit <code>λ < [Self::MAX_LAMBDA]</code>, it
/// statistically impossible to sample a value larger [`u64::MAX`]. As such, it
/// is reasonable to cast generated samples to `u64` using `as`:
/// `distr.sample(&mut rng) as u64` (and memory safe since Rust 1.45).
/// Similarly, when `λ < 4.2e9` it can be safely assumed that samples are less
/// than `u32::MAX`.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Poisson<F>(Method<F>)
where
F: Float + FloatConst,
StandardUniform: Distribution<F>;
/// Error type returned from [`Poisson::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `lambda <= 0`
ShapeTooSmall,
/// `lambda = ∞` or `lambda = nan`
NonFinite,
/// `lambda` is too large, see [Poisson::MAX_LAMBDA]
ShapeTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "lambda is not positive in Poisson distribution",
Error::NonFinite => "lambda is infinite or nan in Poisson distribution",
Error::ShapeTooLarge => {
"lambda is too large in Poisson distribution, see Poisson::MAX_LAMBDA"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub(crate) struct KnuthMethod<F> {
exp_lambda: F,
}
impl<F: Float> KnuthMethod<F> {
pub(crate) fn new(lambda: F) -> Self {
KnuthMethod {
exp_lambda: (-lambda).exp(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct RejectionMethod<F> {
lambda: F,
s: F,
d: F,
l: F,
c: F,
c0: F,
c1: F,
c2: F,
c3: F,
omega: F,
}
impl<F: Float + FloatConst> RejectionMethod<F> {
pub(crate) fn new(lambda: F) -> Self {
let b1 = F::from(1.0 / 24.0).unwrap() / lambda;
let b2 = F::from(0.3).unwrap() * b1 * b1;
let c3 = F::from(1.0 / 7.0).unwrap() * b1 * b2;
let c2 = b2 - F::from(15).unwrap() * c3;
let c1 = b1 - F::from(6).unwrap() * b2 + F::from(45).unwrap() * c3;
let c0 = F::one() - b1 + F::from(3).unwrap() * b2 - F::from(15).unwrap() * c3;
RejectionMethod {
lambda,
s: lambda.sqrt(),
d: F::from(6.0).unwrap() * lambda.powi(2),
l: (lambda - F::from(1.1484).unwrap()).floor(),
c: F::from(0.1069).unwrap() / lambda,
c0,
c1,
c2,
c3,
omega: F::one() / (F::from(2).unwrap() * F::PI()).sqrt() / lambda.sqrt(),
}
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
enum Method<F> {
Knuth(KnuthMethod<F>),
Rejection(RejectionMethod<F>),
}
impl<F> Poisson<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
/// Construct a new `Poisson` with the given shape parameter
/// `lambda`.
///
/// The maximum allowed lambda is [MAX_LAMBDA](Self::MAX_LAMBDA).
pub fn new(lambda: F) -> Result<Poisson<F>, Error> {
if !lambda.is_finite() {
return Err(Error::NonFinite);
}
if !(lambda > F::zero()) {
return Err(Error::ShapeTooSmall);
}
// Use the Knuth method only for low expected values
let method = if lambda < F::from(12.0).unwrap() {
Method::Knuth(KnuthMethod::new(lambda))
} else {
if lambda > F::from(Self::MAX_LAMBDA).unwrap() {
return Err(Error::ShapeTooLarge);
}
Method::Rejection(RejectionMethod::new(lambda))
};
Ok(Poisson(method))
}
/// The maximum supported value of `lambda`
///
/// This value was selected such that
/// `MAX_LAMBDA + 1e6 * sqrt(MAX_LAMBDA) < 2^64 - 1`,
/// thus ensuring that the probability of sampling a value larger than
/// `u64::MAX` is less than 1e-1000.
///
/// Applying this limit also solves
/// [#1312](https://github.com/rust-random/rand/issues/1312).
pub const MAX_LAMBDA: f64 = 1.844e19;
}
impl<F> Distribution<F> for KnuthMethod<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let mut result = F::one();
let mut p = rng.random::<F>();
while p > self.exp_lambda {
p = p * rng.random::<F>();
result = result + F::one();
}
result - F::one()
}
}
impl<F> Distribution<F> for RejectionMethod<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// The algorithm is based on:
// J. H. Ahrens and U. Dieter. 1982.
// Computer Generation of Poisson Deviates from Modified Normal Distributions.
// ACM Trans. Math. Softw. 8, 2 (June 1982), 163–179. https://doi.org/10.1145/355993.355997
// Step F
let f = |k: F| {
const FACT: [f64; 10] = [
1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
]; // factorial of 0..10
const A: [f64; 10] = [
-0.5000000002,
0.3333333343,
-0.2499998565,
0.1999997049,
-0.1666848753,
0.1428833286,
-0.1241963125,
0.1101687109,
-0.1142650302,
0.1055093006,
]; // coefficients from Table 1
let (px, py) = if k < F::from(10.0).unwrap() {
let px = -self.lambda;
let py = self.lambda.powf(k) / F::from(FACT[k.to_usize().unwrap()]).unwrap();
(px, py)
} else {
let delta = (F::from(12.0).unwrap() * k).recip();
let delta = delta - F::from(4.8).unwrap() * delta.powi(3);
let v = (self.lambda - k) / k;
let px = if v.abs() <= F::from(0.25).unwrap() {
k * v.powi(2)
* A.iter()
.rev()
.fold(F::zero(), |acc, &a| {
acc * v + F::from(a).unwrap()
}) // Σ a_i * v^i
- delta
} else {
k * (F::one() + v).ln() - (self.lambda - k) - delta
};
let py = F::one() / (F::from(2.0).unwrap() * F::PI()).sqrt() / k.sqrt();
(px, py)
};
let x = (k - self.lambda + F::from(0.5).unwrap()) / self.s;
let fx = -F::from(0.5).unwrap() * x * x;
let fy =
self.omega * (((self.c3 * x * x + self.c2) * x * x + self.c1) * x * x + self.c0);
(px, py, fx, fy)
};
// Step N
let normal = Normal::new(self.lambda, self.s).unwrap();
let g = normal.sample(rng);
if g >= F::zero() {
let k1 = g.floor();
// Step I
if k1 >= self.l {
return k1;
}
// Step S
let u: F = rng.random();
if self.d * u >= (self.lambda - k1).powi(3) {
return k1;
}
let (px, py, fx, fy) = f(k1);
if fy * (F::one() - u) <= py * (px - fx).exp() {
return k1;
}
}
loop {
// Step E
let e = Exp1.sample(rng);
let u: F = rng.random() * F::from(2.0).unwrap() - F::one();
let t = F::from(1.8).unwrap() + e * u.signum();
if t > F::from(-0.6744).unwrap() {
let k2 = (self.lambda + self.s * t).floor();
let (px, py, fx, fy) = f(k2);
// Step H
if self.c * u.abs() <= py * (px + e).exp() - fy * (fx + e).exp() {
return k2;
}
}
}
}
}
impl<F> Distribution<F> for Poisson<F>
where
F: Float + FloatConst,
StandardUniform: Distribution<F>,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match &self.0 {
Method::Knuth(method) => method.sample(rng),
Method::Rejection(method) => method.sample(rng),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_infinity() {
Poisson::new(f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0).unwrap();
}
#[test]
fn poisson_distributions_can_be_compared() {
assert_eq!(Poisson::new(1.0), Poisson::new(1.0));
}
}