1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The dirichlet distribution `Dirichlet(α₁, α₂, ..., αₙ)`.
#![cfg(feature = "alloc")]
use crate::{Beta, Distribution, Exp1, Gamma, Open01, StandardNormal};
use core::fmt;
use num_traits::{Float, NumCast};
use rand::Rng;
#[cfg(feature = "serde_with")]
use serde_with::serde_as;
use alloc::{boxed::Box, vec, vec::Vec};
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde_with", serde_as)]
struct DirichletFromGamma<F, const N: usize>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
samplers: [Gamma<F>; N],
}
/// Error type returned from [`DirchletFromGamma::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum DirichletFromGammaError {
/// Gamma::new(a, 1) failed.
GammmaNewFailed,
/// gamma_dists.try_into() failed (in theory, this should not happen).
GammaArrayCreationFailed,
}
impl<F, const N: usize> DirichletFromGamma<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Construct a new `DirichletFromGamma` with the given parameters `alpha`.
///
/// This function is part of a private implementation detail.
/// It assumes that the input is correct, so no validation of alpha is done.
#[inline]
fn new(alpha: [F; N]) -> Result<DirichletFromGamma<F, N>, DirichletFromGammaError> {
let mut gamma_dists = Vec::new();
for a in alpha {
let dist =
Gamma::new(a, F::one()).map_err(|_| DirichletFromGammaError::GammmaNewFailed)?;
gamma_dists.push(dist);
}
Ok(DirichletFromGamma {
samplers: gamma_dists
.try_into()
.map_err(|_| DirichletFromGammaError::GammaArrayCreationFailed)?,
})
}
}
impl<F, const N: usize> Distribution<[F; N]> for DirichletFromGamma<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
let mut samples = [F::zero(); N];
let mut sum = F::zero();
for (s, g) in samples.iter_mut().zip(self.samplers.iter()) {
*s = g.sample(rng);
sum = sum + *s;
}
let invacc = F::one() / sum;
for s in samples.iter_mut() {
*s = *s * invacc;
}
samples
}
}
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct DirichletFromBeta<F, const N: usize>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
samplers: Box<[Beta<F>]>,
}
/// Error type returned from [`DirchletFromBeta::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum DirichletFromBetaError {
/// Beta::new(a, b) failed.
BetaNewFailed,
}
impl<F, const N: usize> DirichletFromBeta<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Construct a new `DirichletFromBeta` with the given parameters `alpha`.
///
/// This function is part of a private implementation detail.
/// It assumes that the input is correct, so no validation of alpha is done.
#[inline]
fn new(alpha: [F; N]) -> Result<DirichletFromBeta<F, N>, DirichletFromBetaError> {
// `alpha_rev_csum` is the reverse of the cumulative sum of the
// reverse of `alpha[1..]`. E.g. if `alpha = [a0, a1, a2, a3]`, then
// `alpha_rev_csum` is `[a1 + a2 + a3, a2 + a3, a3]`.
// Note that instances of DirichletFromBeta will always have N >= 2,
// so the subtractions of 1, 2 and 3 from N in the following are safe.
let mut alpha_rev_csum = vec![alpha[N - 1]; N - 1];
for k in 0..(N - 2) {
alpha_rev_csum[N - 3 - k] = alpha_rev_csum[N - 2 - k] + alpha[N - 2 - k];
}
// Zip `alpha[..(N-1)]` and `alpha_rev_csum`; for the example
// `alpha = [a0, a1, a2, a3]`, the zip result holds the tuples
// `[(a0, a1+a2+a3), (a1, a2+a3), (a2, a3)]`.
// Then pass each tuple to `Beta::new()` to create the `Beta`
// instances.
let mut beta_dists = Vec::new();
for (&a, &b) in alpha[..(N - 1)].iter().zip(alpha_rev_csum.iter()) {
let dist = Beta::new(a, b).map_err(|_| DirichletFromBetaError::BetaNewFailed)?;
beta_dists.push(dist);
}
Ok(DirichletFromBeta {
samplers: beta_dists.into_boxed_slice(),
})
}
}
impl<F, const N: usize> Distribution<[F; N]> for DirichletFromBeta<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
let mut samples = [F::zero(); N];
let mut acc = F::one();
for (s, beta) in samples.iter_mut().zip(self.samplers.iter()) {
let beta_sample = beta.sample(rng);
*s = acc * beta_sample;
acc = acc * (F::one() - beta_sample);
}
samples[N - 1] = acc;
samples
}
}
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde_with", serde_as)]
enum DirichletRepr<F, const N: usize>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Dirichlet distribution that generates samples using the Gamma distribution.
FromGamma(DirichletFromGamma<F, N>),
/// Dirichlet distribution that generates samples using the Beta distribution.
FromBeta(DirichletFromBeta<F, N>),
}
/// The [Dirichlet distribution](https://en.wikipedia.org/wiki/Dirichlet_distribution) `Dirichlet(α₁, α₂, ..., αₖ)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector of positive
/// real numbers `α₁, α₂, ..., αₖ`, where `k` is the number of dimensions
/// of the distribution. The distribution is supported on the `k-1`-dimensional
/// simplex, which is the set of points `x = [x₁, x₂, ..., xₖ]` such that
/// `0 ≤ xᵢ ≤ 1` and `∑ xᵢ = 1`.
/// It is a multivariate generalization of the [`Beta`](crate::Beta) distribution.
/// The distribution is symmetric when all `αᵢ` are equal.
///
/// # Plot
///
/// The following plot illustrates the 2-dimensional simplices for various
/// 3-dimensional Dirichlet distributions.
///
/// ![Dirichlet distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/dirichlet.png)
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::Dirichlet;
///
/// let dirichlet = Dirichlet::new([1.0, 2.0, 3.0]).unwrap();
/// let samples = dirichlet.sample(&mut rand::thread_rng());
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
/// ```
#[cfg_attr(feature = "serde_with", serde_as)]
#[derive(Clone, Debug, PartialEq)]
pub struct Dirichlet<F, const N: usize>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
repr: DirichletRepr<F, N>,
}
/// Error type returned from [`Dirichlet::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `alpha.len() < 2`.
AlphaTooShort,
/// `alpha <= 0.0` or `nan`.
AlphaTooSmall,
/// `alpha` is subnormal.
/// Variate generation methods are not reliable with subnormal inputs.
AlphaSubnormal,
/// `alpha` is infinite.
AlphaInfinite,
/// Failed to create required Gamma distribution(s).
FailedToCreateGamma,
/// Failed to create required Beta distribition(s).
FailedToCreateBeta,
/// `size < 2`.
SizeTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::AlphaTooShort | Error::SizeTooSmall => {
"less than 2 dimensions in Dirichlet distribution"
}
Error::AlphaTooSmall => "alpha is not positive in Dirichlet distribution",
Error::AlphaSubnormal => "alpha contains a subnormal value in Dirichlet distribution",
Error::AlphaInfinite => "alpha contains an infinite value in Dirichlet distribution",
Error::FailedToCreateGamma => {
"failed to create required Gamma distribution for Dirichlet distribution"
}
Error::FailedToCreateBeta => {
"failed to create required Beta distribition for Dirichlet distribution"
}
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F, const N: usize> Dirichlet<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
///
/// Requires `alpha.len() >= 2`, and each value in `alpha` must be positive,
/// finite and not subnormal.
#[inline]
pub fn new(alpha: [F; N]) -> Result<Dirichlet<F, N>, Error> {
if N < 2 {
return Err(Error::AlphaTooShort);
}
for &ai in alpha.iter() {
if !(ai > F::zero()) {
// This also catches nan.
return Err(Error::AlphaTooSmall);
}
if ai.is_infinite() {
return Err(Error::AlphaInfinite);
}
if !ai.is_normal() {
return Err(Error::AlphaSubnormal);
}
}
if alpha.iter().all(|&x| x <= NumCast::from(0.1).unwrap()) {
// Use the Beta method when all the alphas are less than 0.1 This
// threshold provides a reasonable compromise between using the faster
// Gamma method for as wide a range as possible while ensuring that
// the probability of generating nans is negligibly small.
let dist = DirichletFromBeta::new(alpha).map_err(|_| Error::FailedToCreateBeta)?;
Ok(Dirichlet {
repr: DirichletRepr::FromBeta(dist),
})
} else {
let dist = DirichletFromGamma::new(alpha).map_err(|_| Error::FailedToCreateGamma)?;
Ok(Dirichlet {
repr: DirichletRepr::FromGamma(dist),
})
}
}
}
impl<F, const N: usize> Distribution<[F; N]> for Dirichlet<F, N>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
match &self.repr {
DirichletRepr::FromGamma(dirichlet) => dirichlet.sample(rng),
DirichletRepr::FromBeta(dirichlet) => dirichlet.sample(rng),
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_dirichlet() {
let d = Dirichlet::new([1.0, 2.0, 3.0]).unwrap();
let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
assert!(samples.into_iter().all(|x: f64| x > 0.0));
}
#[test]
#[should_panic]
fn test_dirichlet_invalid_length() {
Dirichlet::new([0.5]).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_alpha_zero() {
Dirichlet::new([0.1, 0.0, 0.3]).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_alpha_negative() {
Dirichlet::new([0.1, -1.5, 0.3]).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_alpha_nan() {
Dirichlet::new([0.5, f64::NAN, 0.25]).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_alpha_subnormal() {
Dirichlet::new([0.5, 1.5e-321, 0.25]).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_alpha_inf() {
Dirichlet::new([0.5, f64::INFINITY, 0.25]).unwrap();
}
#[test]
fn dirichlet_distributions_can_be_compared() {
assert_eq!(Dirichlet::new([1.0, 2.0]), Dirichlet::new([1.0, 2.0]));
}
/// Check that the means of the components of n samples from
/// the Dirichlet distribution agree with the expected means
/// with a relative tolerance of rtol.
///
/// This is a crude statistical test, but it will catch egregious
/// mistakes. It will also also fail if any samples contain nan.
fn check_dirichlet_means<const N: usize>(alpha: [f64; N], n: i32, rtol: f64, seed: u64) {
let d = Dirichlet::new(alpha).unwrap();
let mut rng = crate::test::rng(seed);
let mut sums = [0.0; N];
for _ in 0..n {
let samples = d.sample(&mut rng);
for i in 0..N {
sums[i] += samples[i];
}
}
let sample_mean = sums.map(|x| x / n as f64);
let alpha_sum: f64 = alpha.iter().sum();
let expected_mean = alpha.map(|x| x / alpha_sum);
for i in 0..N {
assert_almost_eq!(sample_mean[i], expected_mean[i], rtol);
}
}
#[test]
fn test_dirichlet_means() {
// Check the means of 20000 samples for several different alphas.
let n = 20000;
let rtol = 2e-2;
let seed = 1317624576693539401;
check_dirichlet_means([0.5, 0.25], n, rtol, seed);
check_dirichlet_means([123.0, 75.0], n, rtol, seed);
check_dirichlet_means([2.0, 2.5, 5.0, 7.0], n, rtol, seed);
check_dirichlet_means([0.1, 8.0, 1.0, 2.0, 2.0, 0.85, 0.05, 12.5], n, rtol, seed);
}
#[test]
fn test_dirichlet_means_very_small_alpha() {
// With values of alpha that are all 0.001, check that the means of the
// components of 10000 samples are within 1% of the expected means.
// With the sampling method based on gamma variates, this test would
// fail, with about 10% of the samples containing nan.
let alpha = [0.001; 3];
let n = 10000;
let rtol = 1e-2;
let seed = 1317624576693539401;
check_dirichlet_means(alpha, n, rtol, seed);
}
#[test]
fn test_dirichlet_means_small_alpha() {
// With values of alpha that are all less than 0.1, check that the
// means of the components of 150000 samples are within 0.1% of the
// expected means.
let alpha = [0.05, 0.025, 0.075, 0.05];
let n = 150000;
let rtol = 1e-3;
let seed = 1317624576693539401;
check_dirichlet_means(alpha, n, rtol, seed);
}
}