rand_distr/
dirichlet.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The dirichlet distribution `Dirichlet(α₁, α₂, ..., αₙ)`.

#![cfg(feature = "alloc")]
use crate::{Beta, Distribution, Exp1, Gamma, Open01, StandardNormal};
use core::fmt;
use num_traits::{Float, NumCast};
use rand::Rng;
#[cfg(feature = "serde")]
use serde_with::serde_as;

use alloc::{boxed::Box, vec, vec::Vec};

#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", serde_as)]
struct DirichletFromGamma<F, const N: usize>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    samplers: [Gamma<F>; N],
}

/// Error type returned from [`DirchletFromGamma::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum DirichletFromGammaError {
    /// Gamma::new(a, 1) failed.
    GammmaNewFailed,

    /// gamma_dists.try_into() failed (in theory, this should not happen).
    GammaArrayCreationFailed,
}

impl<F, const N: usize> DirichletFromGamma<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Construct a new `DirichletFromGamma` with the given parameters `alpha`.
    ///
    /// This function is part of a private implementation detail.
    /// It assumes that the input is correct, so no validation of alpha is done.
    #[inline]
    fn new(alpha: [F; N]) -> Result<DirichletFromGamma<F, N>, DirichletFromGammaError> {
        let mut gamma_dists = Vec::new();
        for a in alpha {
            let dist =
                Gamma::new(a, F::one()).map_err(|_| DirichletFromGammaError::GammmaNewFailed)?;
            gamma_dists.push(dist);
        }
        Ok(DirichletFromGamma {
            samplers: gamma_dists
                .try_into()
                .map_err(|_| DirichletFromGammaError::GammaArrayCreationFailed)?,
        })
    }
}

impl<F, const N: usize> Distribution<[F; N]> for DirichletFromGamma<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
        let mut samples = [F::zero(); N];
        let mut sum = F::zero();

        for (s, g) in samples.iter_mut().zip(self.samplers.iter()) {
            *s = g.sample(rng);
            sum = sum + *s;
        }
        let invacc = F::one() / sum;
        for s in samples.iter_mut() {
            *s = *s * invacc;
        }
        samples
    }
}

#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct DirichletFromBeta<F, const N: usize>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    samplers: Box<[Beta<F>]>,
}

/// Error type returned from [`DirchletFromBeta::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum DirichletFromBetaError {
    /// Beta::new(a, b) failed.
    BetaNewFailed,
}

impl<F, const N: usize> DirichletFromBeta<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Construct a new `DirichletFromBeta` with the given parameters `alpha`.
    ///
    /// This function is part of a private implementation detail.
    /// It assumes that the input is correct, so no validation of alpha is done.
    #[inline]
    fn new(alpha: [F; N]) -> Result<DirichletFromBeta<F, N>, DirichletFromBetaError> {
        // `alpha_rev_csum` is the reverse of the cumulative sum of the
        // reverse of `alpha[1..]`.  E.g. if `alpha = [a0, a1, a2, a3]`, then
        // `alpha_rev_csum` is `[a1 + a2 + a3, a2 + a3, a3]`.
        // Note that instances of DirichletFromBeta will always have N >= 2,
        // so the subtractions of 1, 2 and 3 from N in the following are safe.
        let mut alpha_rev_csum = vec![alpha[N - 1]; N - 1];
        for k in 0..(N - 2) {
            alpha_rev_csum[N - 3 - k] = alpha_rev_csum[N - 2 - k] + alpha[N - 2 - k];
        }

        // Zip `alpha[..(N-1)]` and `alpha_rev_csum`; for the example
        // `alpha = [a0, a1, a2, a3]`, the zip result holds the tuples
        // `[(a0, a1+a2+a3), (a1, a2+a3), (a2, a3)]`.
        // Then pass each tuple to `Beta::new()` to create the `Beta`
        // instances.
        let mut beta_dists = Vec::new();
        for (&a, &b) in alpha[..(N - 1)].iter().zip(alpha_rev_csum.iter()) {
            let dist = Beta::new(a, b).map_err(|_| DirichletFromBetaError::BetaNewFailed)?;
            beta_dists.push(dist);
        }
        Ok(DirichletFromBeta {
            samplers: beta_dists.into_boxed_slice(),
        })
    }
}

impl<F, const N: usize> Distribution<[F; N]> for DirichletFromBeta<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
        let mut samples = [F::zero(); N];
        let mut acc = F::one();

        for (s, beta) in samples.iter_mut().zip(self.samplers.iter()) {
            let beta_sample = beta.sample(rng);
            *s = acc * beta_sample;
            acc = acc * (F::one() - beta_sample);
        }
        samples[N - 1] = acc;
        samples
    }
}

#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", serde_as)]
enum DirichletRepr<F, const N: usize>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Dirichlet distribution that generates samples using the Gamma distribution.
    FromGamma(DirichletFromGamma<F, N>),

    /// Dirichlet distribution that generates samples using the Beta distribution.
    FromBeta(DirichletFromBeta<F, N>),
}

/// The [Dirichlet distribution](https://en.wikipedia.org/wiki/Dirichlet_distribution) `Dirichlet(α₁, α₂, ..., αₖ)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector of positive
/// real numbers `α₁, α₂, ..., αₖ`, where `k` is the number of dimensions
/// of the distribution. The distribution is supported on the `k-1`-dimensional
/// simplex, which is the set of points `x = [x₁, x₂, ..., xₖ]` such that
/// `0 ≤ xᵢ ≤ 1` and `∑ xᵢ = 1`.
/// It is a multivariate generalization of the [`Beta`](crate::Beta) distribution.
/// The distribution is symmetric when all `αᵢ` are equal.
///
/// # Plot
///
/// The following plot illustrates the 2-dimensional simplices for various
/// 3-dimensional Dirichlet distributions.
///
/// ![Dirichlet distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/dirichlet.png)
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::Dirichlet;
///
/// let dirichlet = Dirichlet::new([1.0, 2.0, 3.0]).unwrap();
/// let samples = dirichlet.sample(&mut rand::rng());
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
/// ```
#[cfg_attr(feature = "serde", serde_as)]
#[derive(Clone, Debug, PartialEq)]
pub struct Dirichlet<F, const N: usize>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    repr: DirichletRepr<F, N>,
}

/// Error type returned from [`Dirichlet::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `alpha.len() < 2`.
    AlphaTooShort,
    /// `alpha <= 0.0` or `nan`.
    AlphaTooSmall,
    /// `alpha` is subnormal.
    /// Variate generation methods are not reliable with subnormal inputs.
    AlphaSubnormal,
    /// `alpha` is infinite.
    AlphaInfinite,
    /// Failed to create required Gamma distribution(s).
    FailedToCreateGamma,
    /// Failed to create required Beta distribition(s).
    FailedToCreateBeta,
    /// `size < 2`.
    SizeTooSmall,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::AlphaTooShort | Error::SizeTooSmall => {
                "less than 2 dimensions in Dirichlet distribution"
            }
            Error::AlphaTooSmall => "alpha is not positive in Dirichlet distribution",
            Error::AlphaSubnormal => "alpha contains a subnormal value in Dirichlet distribution",
            Error::AlphaInfinite => "alpha contains an infinite value in Dirichlet distribution",
            Error::FailedToCreateGamma => {
                "failed to create required Gamma distribution for Dirichlet distribution"
            }
            Error::FailedToCreateBeta => {
                "failed to create required Beta distribition for Dirichlet distribution"
            }
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

impl<F, const N: usize> Dirichlet<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
    ///
    /// Requires `alpha.len() >= 2`, and each value in `alpha` must be positive,
    /// finite and not subnormal.
    #[inline]
    pub fn new(alpha: [F; N]) -> Result<Dirichlet<F, N>, Error> {
        if N < 2 {
            return Err(Error::AlphaTooShort);
        }
        for &ai in alpha.iter() {
            if !(ai > F::zero()) {
                // This also catches nan.
                return Err(Error::AlphaTooSmall);
            }
            if ai.is_infinite() {
                return Err(Error::AlphaInfinite);
            }
            if !ai.is_normal() {
                return Err(Error::AlphaSubnormal);
            }
        }

        if alpha.iter().all(|&x| x <= NumCast::from(0.1).unwrap()) {
            // Use the Beta method when all the alphas are less than 0.1  This
            // threshold provides a reasonable compromise between using the faster
            // Gamma method for as wide a range as possible while ensuring that
            // the probability of generating nans is negligibly small.
            let dist = DirichletFromBeta::new(alpha).map_err(|_| Error::FailedToCreateBeta)?;
            Ok(Dirichlet {
                repr: DirichletRepr::FromBeta(dist),
            })
        } else {
            let dist = DirichletFromGamma::new(alpha).map_err(|_| Error::FailedToCreateGamma)?;
            Ok(Dirichlet {
                repr: DirichletRepr::FromGamma(dist),
            })
        }
    }
}

impl<F, const N: usize> Distribution<[F; N]> for Dirichlet<F, N>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> [F; N] {
        match &self.repr {
            DirichletRepr::FromGamma(dirichlet) => dirichlet.sample(rng),
            DirichletRepr::FromBeta(dirichlet) => dirichlet.sample(rng),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_dirichlet() {
        let d = Dirichlet::new([1.0, 2.0, 3.0]).unwrap();
        let mut rng = crate::test::rng(221);
        let samples = d.sample(&mut rng);
        assert!(samples.into_iter().all(|x: f64| x > 0.0));
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_invalid_length() {
        Dirichlet::new([0.5]).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_alpha_zero() {
        Dirichlet::new([0.1, 0.0, 0.3]).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_alpha_negative() {
        Dirichlet::new([0.1, -1.5, 0.3]).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_alpha_nan() {
        Dirichlet::new([0.5, f64::NAN, 0.25]).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_alpha_subnormal() {
        Dirichlet::new([0.5, 1.5e-321, 0.25]).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_dirichlet_alpha_inf() {
        Dirichlet::new([0.5, f64::INFINITY, 0.25]).unwrap();
    }

    #[test]
    fn dirichlet_distributions_can_be_compared() {
        assert_eq!(Dirichlet::new([1.0, 2.0]), Dirichlet::new([1.0, 2.0]));
    }

    /// Check that the means of the components of n samples from
    /// the Dirichlet distribution agree with the expected means
    /// with a relative tolerance of rtol.
    ///
    /// This is a crude statistical test, but it will catch egregious
    /// mistakes.  It will also also fail if any samples contain nan.
    fn check_dirichlet_means<const N: usize>(alpha: [f64; N], n: i32, rtol: f64, seed: u64) {
        let d = Dirichlet::new(alpha).unwrap();
        let mut rng = crate::test::rng(seed);
        let mut sums = [0.0; N];
        for _ in 0..n {
            let samples = d.sample(&mut rng);
            for i in 0..N {
                sums[i] += samples[i];
            }
        }
        let sample_mean = sums.map(|x| x / n as f64);
        let alpha_sum: f64 = alpha.iter().sum();
        let expected_mean = alpha.map(|x| x / alpha_sum);
        for i in 0..N {
            assert_almost_eq!(sample_mean[i], expected_mean[i], rtol);
        }
    }

    #[test]
    fn test_dirichlet_means() {
        // Check the means of 20000 samples for several different alphas.
        let n = 20000;
        let rtol = 2e-2;
        let seed = 1317624576693539401;
        check_dirichlet_means([0.5, 0.25], n, rtol, seed);
        check_dirichlet_means([123.0, 75.0], n, rtol, seed);
        check_dirichlet_means([2.0, 2.5, 5.0, 7.0], n, rtol, seed);
        check_dirichlet_means([0.1, 8.0, 1.0, 2.0, 2.0, 0.85, 0.05, 12.5], n, rtol, seed);
    }

    #[test]
    fn test_dirichlet_means_very_small_alpha() {
        // With values of alpha that are all 0.001, check that the means of the
        // components of 10000 samples are within 1% of the expected means.
        // With the sampling method based on gamma variates, this test would
        // fail, with about 10% of the samples containing nan.
        let alpha = [0.001; 3];
        let n = 10000;
        let rtol = 1e-2;
        let seed = 1317624576693539401;
        check_dirichlet_means(alpha, n, rtol, seed);
    }

    #[test]
    fn test_dirichlet_means_small_alpha() {
        // With values of alpha that are all less than 0.1, check that the
        // means of the components of 150000 samples are within 0.1% of the
        // expected means.
        let alpha = [0.05, 0.025, 0.075, 0.05];
        let n = 150000;
        let rtol = 1e-3;
        let seed = 1317624576693539401;
        check_dirichlet_means(alpha, n, rtol, seed);
    }
}