rand_distr/zeta.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Zeta distribution.
use crate::{Distribution, StandardUniform};
use core::fmt;
use num_traits::Float;
use rand::{distr::OpenClosed01, Rng};
/// The [Zeta distribution](https://en.wikipedia.org/wiki/Zeta_distribution) `Zeta(s)`.
///
/// The [Zeta distribution](https://en.wikipedia.org/wiki/Zeta_distribution)
/// is a discrete probability distribution with parameter `s`.
/// It is a special case of the [`Zipf`](crate::Zipf) distribution with `n = ∞`.
/// It is also known as the discrete Pareto, Riemann-Zeta, Zipf, or Zipf–Estoup distribution.
///
/// # Density function
///
/// `f(k) = k^(-s) / ζ(s)` for `k >= 1`, where `ζ` is the
/// [Riemann zeta function](https://en.wikipedia.org/wiki/Riemann_zeta_function).
///
/// # Plot
///
/// The following plot illustrates the zeta distribution for various values of `s`.
///
/// ![Zeta distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/zeta.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Zeta;
///
/// let val: f64 = rand::rng().sample(Zeta::new(1.5).unwrap());
/// println!("{}", val);
/// ```
///
/// # Integer vs FP return type
///
/// This implementation uses floating-point (FP) logic internally, which can
/// potentially generate very large samples (exceeding e.g. `u64::MAX`).
///
/// It is *safe* to cast such results to an integer type using `as`
/// (e.g. `distr.sample(&mut rng) as u64`), since such casts are saturating
/// (e.g. `2f64.powi(64) as u64 == u64::MAX`). It is up to the user to
/// determine whether this potential loss of accuracy is acceptable
/// (this determination may depend on the distribution's parameters).
///
/// # Notes
///
/// The zeta distribution has no upper limit. Sampled values may be infinite.
/// In particular, a value of infinity might be returned for the following
/// reasons:
/// 1. it is the best representation in the type `F` of the actual sample.
/// 2. to prevent infinite loops for very small `s`.
///
/// # Implementation details
///
/// We are using the algorithm from
/// [Non-Uniform Random Variate Generation](https://doi.org/10.1007/978-1-4613-8643-8),
/// Section 6.1, page 551.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Zeta<F>
where
F: Float,
StandardUniform: Distribution<F>,
OpenClosed01: Distribution<F>,
{
s_minus_1: F,
b: F,
}
/// Error type returned from [`Zeta::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `s <= 1` or `nan`.
STooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::STooSmall => "s <= 1 or is NaN in Zeta distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Zeta<F>
where
F: Float,
StandardUniform: Distribution<F>,
OpenClosed01: Distribution<F>,
{
/// Construct a new `Zeta` distribution with given `s` parameter.
#[inline]
pub fn new(s: F) -> Result<Zeta<F>, Error> {
if !(s > F::one()) {
return Err(Error::STooSmall);
}
let s_minus_1 = s - F::one();
let two = F::one() + F::one();
Ok(Zeta {
s_minus_1,
b: two.powf(s_minus_1),
})
}
}
impl<F> Distribution<F> for Zeta<F>
where
F: Float,
StandardUniform: Distribution<F>,
OpenClosed01: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
loop {
let u = rng.sample(OpenClosed01);
let x = u.powf(-F::one() / self.s_minus_1).floor();
debug_assert!(x >= F::one());
if x.is_infinite() {
// For sufficiently small `s`, `x` will always be infinite,
// which is rejected, resulting in an infinite loop. We avoid
// this by always returning infinity instead.
return x;
}
let t = (F::one() + F::one() / x).powf(self.s_minus_1);
let v = rng.sample(StandardUniform);
if v * x * (t - F::one()) * self.b <= t * (self.b - F::one()) {
return x;
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_samples<F: Float + fmt::Debug, D: Distribution<F>>(distr: D, zero: F, expected: &[F]) {
let mut rng = crate::test::rng(213);
let mut buf = [zero; 4];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
#[test]
#[should_panic]
fn zeta_invalid() {
Zeta::new(1.).unwrap();
}
#[test]
#[should_panic]
fn zeta_nan() {
Zeta::new(f64::NAN).unwrap();
}
#[test]
fn zeta_sample() {
let a = 2.0;
let d = Zeta::new(a).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
}
#[test]
fn zeta_small_a() {
let a = 1. + 1e-15;
let d = Zeta::new(a).unwrap();
let mut rng = crate::test::rng(2);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
}
#[test]
fn zeta_value_stability() {
test_samples(Zeta::new(1.5).unwrap(), 0f32, &[1.0, 2.0, 1.0, 1.0]);
test_samples(Zeta::new(2.0).unwrap(), 0f64, &[2.0, 1.0, 1.0, 1.0]);
}
#[test]
fn zeta_distributions_can_be_compared() {
assert_eq!(Zeta::new(1.0), Zeta::new(1.0));
}
}