1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gumbel distribution `Gumbel(μ, β)`.
use crate::{Distribution, OpenClosed01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [Gumbel distribution](https://en.wikipedia.org/wiki/Gumbel_distribution) `Gumbel(μ, β)`.
///
/// The Gumbel distribution is a continuous probability distribution
/// with location parameter `μ` (`mu`) and scale parameter `β` (`beta`).
/// It is used to model the distribution of the maximum (or minimum)
/// of a number of samples of various distributions.
///
/// # Density function
///
/// `f(x) = exp(-(z + exp(-z))) / β`, where `z = (x - μ) / β`.
///
/// # Plot
///
/// The following plot illustrates the Gumbel distribution with various values of `μ` and `β`.
/// Note how the location parameter `μ` shifts the distribution along the x-axis,
/// and the scale parameter `β` changes the density around `μ`.
/// Note also the asymptotic behavior of the distribution towards the right.
///
/// ![Gumbel distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/gumbel.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Gumbel;
///
/// let val: f64 = thread_rng().sample(Gumbel::new(0.0, 1.0).unwrap());
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
location: F,
scale: F,
}
/// Error type returned from [`Gumbel::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// location is infinite or NaN
LocationNotFinite,
/// scale is not finite positive number
ScaleNotPositive,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleNotPositive => "scale is not positive and finite in Gumbel distribution",
Error::LocationNotFinite => "location is not finite in Gumbel distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
/// Construct a new `Gumbel` distribution with given `location` and `scale`.
pub fn new(location: F, scale: F) -> Result<Gumbel<F>, Error> {
if scale <= F::zero() || scale.is_infinite() || scale.is_nan() {
return Err(Error::ScaleNotPositive);
}
if location.is_infinite() || location.is_nan() {
return Err(Error::LocationNotFinite);
}
Ok(Gumbel { location, scale })
}
}
impl<F> Distribution<F> for Gumbel<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let x: F = rng.sample(OpenClosed01);
self.location - self.scale * (-x.ln()).ln()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn test_zero_scale() {
Gumbel::new(0.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_scale() {
Gumbel::new(0.0, f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_nan_scale() {
Gumbel::new(0.0, f64::NAN).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_location() {
Gumbel::new(f64::INFINITY, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_nan_location() {
Gumbel::new(f64::NAN, 1.0).unwrap();
}
#[test]
fn test_sample_against_cdf() {
fn neg_log_log(x: f64) -> f64 {
-(-x.ln()).ln()
}
let location = 0.0;
let scale = 1.0;
let iterations = 100_000;
let increment = 1.0 / iterations as f64;
let probabilities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
let mut quantiles = [0.0; 9];
for (i, p) in probabilities.iter().enumerate() {
quantiles[i] = neg_log_log(*p);
}
let mut proportions = [0.0; 9];
let d = Gumbel::new(location, scale).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..iterations {
let replicate = d.sample(&mut rng);
for (i, q) in quantiles.iter().enumerate() {
if replicate < *q {
proportions[i] += increment;
}
}
}
assert!(proportions
.iter()
.zip(&probabilities)
.all(|(p_hat, p)| (p_hat - p).abs() < 0.003))
}
#[test]
fn gumbel_distributions_can_be_compared() {
assert_eq!(Gumbel::new(1.0, 2.0), Gumbel::new(1.0, 2.0));
}
}