rand_distr/
binomial.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The binomial distribution `Binomial(n, p)`.

use crate::{Distribution, Uniform};
use core::cmp::Ordering;
use core::fmt;
#[allow(unused_imports)]
use num_traits::Float;
use rand::Rng;

/// The [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution) `Binomial(n, p)`.
///
/// The binomial distribution is a discrete probability distribution
/// which describes the probability of seeing `k` successes in `n`
/// independent trials, each of which has success probability `p`.
///
/// # Density function
///
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
///
/// # Plot
///
/// The following plot of the binomial distribution illustrates the
/// probability of `k` successes out of `n = 10` trials with `p = 0.2`
/// and `p = 0.6` for `0 <= k <= n`.
///
/// ![Binomial distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/binomial.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Binomial, Distribution};
///
/// let bin = Binomial::new(20, 0.3).unwrap();
/// let v = bin.sample(&mut rand::rng());
/// println!("{} is from a binomial distribution", v);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Binomial {
    method: Method,
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
enum Method {
    Binv(Binv, bool),
    Btpe(Btpe, bool),
    Poisson(crate::poisson::KnuthMethod<f64>),
    Constant(u64),
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct Binv {
    r: f64,
    s: f64,
    a: f64,
    n: u64,
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct Btpe {
    n: u64,
    p: f64,
    m: i64,
    p1: f64,
}

/// Error type returned from [`Binomial::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
// Marked non_exhaustive to allow a new error code in the solution to #1378.
#[non_exhaustive]
pub enum Error {
    /// `p < 0` or `nan`.
    ProbabilityTooSmall,
    /// `p > 1`.
    ProbabilityTooLarge,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::ProbabilityTooSmall => "p < 0 or is NaN in binomial distribution",
            Error::ProbabilityTooLarge => "p > 1 in binomial distribution",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

impl Binomial {
    /// Construct a new `Binomial` with the given shape parameters `n` (number
    /// of trials) and `p` (probability of success).
    pub fn new(n: u64, p: f64) -> Result<Binomial, Error> {
        if !(p >= 0.0) {
            return Err(Error::ProbabilityTooSmall);
        }
        if !(p <= 1.0) {
            return Err(Error::ProbabilityTooLarge);
        }

        if p == 0.0 {
            return Ok(Binomial {
                method: Method::Constant(0),
            });
        }

        if p == 1.0 {
            return Ok(Binomial {
                method: Method::Constant(n),
            });
        }

        // The binomial distribution is symmetrical with respect to p -> 1-p
        let flipped = p > 0.5;
        let p = if flipped { 1.0 - p } else { p };

        // For small n * min(p, 1 - p), the BINV algorithm based on the inverse
        // transformation of the binomial distribution is efficient. Otherwise,
        // the BTPE algorithm is used.
        //
        // Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1988. Binomial
        // random variate generation. Commun. ACM 31, 2 (February 1988),
        // 216-222. http://dx.doi.org/10.1145/42372.42381

        // Threshold for preferring the BINV algorithm. The paper suggests 10,
        // Ranlib uses 30, and GSL uses 14.
        const BINV_THRESHOLD: f64 = 10.;

        let np = n as f64 * p;
        let method = if np < BINV_THRESHOLD {
            let q = 1.0 - p;
            if q == 1.0 {
                // p is so small that this is extremely close to a Poisson distribution.
                // The flipped case cannot occur here.
                Method::Poisson(crate::poisson::KnuthMethod::new(np))
            } else {
                let s = p / q;
                Method::Binv(
                    Binv {
                        r: q.powf(n as f64),
                        s,
                        a: (n as f64 + 1.0) * s,
                        n,
                    },
                    flipped,
                )
            }
        } else {
            let q = 1.0 - p;
            let npq = np * q;
            let p1 = (2.195 * npq.sqrt() - 4.6 * q).floor() + 0.5;
            let f_m = np + p;
            let m = f64_to_i64(f_m);
            Method::Btpe(Btpe { n, p, m, p1 }, flipped)
        };
        Ok(Binomial { method })
    }
}

/// Convert a `f64` to an `i64`, panicking on overflow.
fn f64_to_i64(x: f64) -> i64 {
    assert!(x < (i64::MAX as f64));
    x as i64
}

fn binv<R: Rng + ?Sized>(binv: Binv, flipped: bool, rng: &mut R) -> u64 {
    // Same value as in GSL.
    // It is possible for BINV to get stuck, so we break if x > BINV_MAX_X and try again.
    // It would be safer to set BINV_MAX_X to self.n, but it is extremely unlikely to be relevant.
    // When n*p < 10, so is n*p*q which is the variance, so a result > 110 would be 100 / sqrt(10) = 31 standard deviations away.
    const BINV_MAX_X: u64 = 110;

    let sample = 'outer: loop {
        let mut r = binv.r;
        let mut u: f64 = rng.random();
        let mut x = 0;

        while u > r {
            u -= r;
            x += 1;
            if x > BINV_MAX_X {
                continue 'outer;
            }
            r *= binv.a / (x as f64) - binv.s;
        }
        break x;
    };

    if flipped {
        binv.n - sample
    } else {
        sample
    }
}

#[allow(clippy::many_single_char_names)] // Same names as in the reference.
fn btpe<R: Rng + ?Sized>(btpe: Btpe, flipped: bool, rng: &mut R) -> u64 {
    // Threshold for using the squeeze algorithm. This can be freely
    // chosen based on performance. Ranlib and GSL use 20.
    const SQUEEZE_THRESHOLD: i64 = 20;

    // Step 0: Calculate constants as functions of `n` and `p`.
    let n = btpe.n as f64;
    let np = n * btpe.p;
    let q = 1. - btpe.p;
    let npq = np * q;
    let f_m = np + btpe.p;
    let m = btpe.m;
    // radius of triangle region, since height=1 also area of region
    let p1 = btpe.p1;
    // tip of triangle
    let x_m = (m as f64) + 0.5;
    // left edge of triangle
    let x_l = x_m - p1;
    // right edge of triangle
    let x_r = x_m + p1;
    let c = 0.134 + 20.5 / (15.3 + (m as f64));
    // p1 + area of parallelogram region
    let p2 = p1 * (1. + 2. * c);

    fn lambda(a: f64) -> f64 {
        a * (1. + 0.5 * a)
    }

    let lambda_l = lambda((f_m - x_l) / (f_m - x_l * btpe.p));
    let lambda_r = lambda((x_r - f_m) / (x_r * q));

    let p3 = p2 + c / lambda_l;

    let p4 = p3 + c / lambda_r;

    // return value
    let mut y: i64;

    let gen_u = Uniform::new(0., p4).unwrap();
    let gen_v = Uniform::new(0., 1.).unwrap();

    loop {
        // Step 1: Generate `u` for selecting the region. If region 1 is
        // selected, generate a triangularly distributed variate.
        let u = gen_u.sample(rng);
        let mut v = gen_v.sample(rng);
        if !(u > p1) {
            y = f64_to_i64(x_m - p1 * v + u);
            break;
        }

        if !(u > p2) {
            // Step 2: Region 2, parallelograms. Check if region 2 is
            // used. If so, generate `y`.
            let x = x_l + (u - p1) / c;
            v = v * c + 1.0 - (x - x_m).abs() / p1;
            if v > 1. {
                continue;
            } else {
                y = f64_to_i64(x);
            }
        } else if !(u > p3) {
            // Step 3: Region 3, left exponential tail.
            y = f64_to_i64(x_l + v.ln() / lambda_l);
            if y < 0 {
                continue;
            } else {
                v *= (u - p2) * lambda_l;
            }
        } else {
            // Step 4: Region 4, right exponential tail.
            y = f64_to_i64(x_r - v.ln() / lambda_r);
            if y > 0 && (y as u64) > btpe.n {
                continue;
            } else {
                v *= (u - p3) * lambda_r;
            }
        }

        // Step 5: Acceptance/rejection comparison.

        // Step 5.0: Test for appropriate method of evaluating f(y).
        let k = (y - m).abs();
        if !(k > SQUEEZE_THRESHOLD && (k as f64) < 0.5 * npq - 1.) {
            // Step 5.1: Evaluate f(y) via the recursive relationship. Start the
            // search from the mode.
            let s = btpe.p / q;
            let a = s * (n + 1.);
            let mut f = 1.0;
            match m.cmp(&y) {
                Ordering::Less => {
                    let mut i = m;
                    loop {
                        i += 1;
                        f *= a / (i as f64) - s;
                        if i == y {
                            break;
                        }
                    }
                }
                Ordering::Greater => {
                    let mut i = y;
                    loop {
                        i += 1;
                        f /= a / (i as f64) - s;
                        if i == m {
                            break;
                        }
                    }
                }
                Ordering::Equal => {}
            }
            if v > f {
                continue;
            } else {
                break;
            }
        }

        // Step 5.2: Squeezing. Check the value of ln(v) against upper and
        // lower bound of ln(f(y)).
        let k = k as f64;
        let rho = (k / npq) * ((k * (k / 3. + 0.625) + 1. / 6.) / npq + 0.5);
        let t = -0.5 * k * k / npq;
        let alpha = v.ln();
        if alpha < t - rho {
            break;
        }
        if alpha > t + rho {
            continue;
        }

        // Step 5.3: Final acceptance/rejection test.
        let x1 = (y + 1) as f64;
        let f1 = (m + 1) as f64;
        let z = (f64_to_i64(n) + 1 - m) as f64;
        let w = (f64_to_i64(n) - y + 1) as f64;

        fn stirling(a: f64) -> f64 {
            let a2 = a * a;
            (13860. - (462. - (132. - (99. - 140. / a2) / a2) / a2) / a2) / a / 166320.
        }

        if alpha
            > x_m * (f1 / x1).ln()
                + (n - (m as f64) + 0.5) * (z / w).ln()
                + ((y - m) as f64) * (w * btpe.p / (x1 * q)).ln()
                // We use the signs from the GSL implementation, which are
                // different than the ones in the reference. According to
                // the GSL authors, the new signs were verified to be
                // correct by one of the original designers of the
                // algorithm.
                + stirling(f1)
                + stirling(z)
                - stirling(x1)
                - stirling(w)
        {
            continue;
        }

        break;
    }
    assert!(y >= 0);
    let y = y as u64;

    if flipped {
        btpe.n - y
    } else {
        y
    }
}

impl Distribution<u64> for Binomial {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
        match self.method {
            Method::Binv(binv_para, flipped) => binv(binv_para, flipped, rng),
            Method::Btpe(btpe_para, flipped) => btpe(btpe_para, flipped, rng),
            Method::Poisson(poisson) => poisson.sample(rng) as u64,
            Method::Constant(c) => c,
        }
    }
}

#[cfg(test)]
mod test {
    use super::Binomial;
    use crate::Distribution;
    use rand::Rng;

    fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
        let binomial = Binomial::new(n, p).unwrap();

        let expected_mean = n as f64 * p;
        let expected_variance = n as f64 * p * (1.0 - p);

        let mut results = [0.0; 1000];
        for i in results.iter_mut() {
            *i = binomial.sample(rng) as f64;
        }

        let mean = results.iter().sum::<f64>() / results.len() as f64;
        assert!((mean - expected_mean).abs() < expected_mean / 50.0);

        let variance =
            results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
        assert!((variance - expected_variance).abs() < expected_variance / 10.0);
    }

    #[test]
    fn test_binomial() {
        let mut rng = crate::test::rng(351);
        test_binomial_mean_and_variance(150, 0.1, &mut rng);
        test_binomial_mean_and_variance(70, 0.6, &mut rng);
        test_binomial_mean_and_variance(40, 0.5, &mut rng);
        test_binomial_mean_and_variance(20, 0.7, &mut rng);
        test_binomial_mean_and_variance(20, 0.5, &mut rng);
        test_binomial_mean_and_variance(1 << 61, 1e-17, &mut rng);
        test_binomial_mean_and_variance(u64::MAX, 1e-19, &mut rng);
    }

    #[test]
    fn test_binomial_end_points() {
        let mut rng = crate::test::rng(352);
        assert_eq!(rng.sample(Binomial::new(20, 0.0).unwrap()), 0);
        assert_eq!(rng.sample(Binomial::new(20, 1.0).unwrap()), 20);
    }

    #[test]
    #[should_panic]
    fn test_binomial_invalid_lambda_neg() {
        Binomial::new(20, -10.0).unwrap();
    }

    #[test]
    fn binomial_distributions_can_be_compared() {
        assert_eq!(Binomial::new(1, 1.0), Binomial::new(1, 1.0));
    }

    #[test]
    fn binomial_avoid_infinite_loop() {
        let dist = Binomial::new(16000000, 3.1444753148558566e-10).unwrap();
        let mut sum: u64 = 0;
        let mut rng = crate::test::rng(742);
        for _ in 0..100_000 {
            sum = sum.wrapping_add(dist.sample(&mut rng));
        }
        assert_ne!(sum, 0);
    }
}