rand_distr/binomial.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The binomial distribution `Binomial(n, p)`.
use crate::{Distribution, Uniform};
use core::cmp::Ordering;
use core::fmt;
#[allow(unused_imports)]
use num_traits::Float;
use rand::Rng;
/// The [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution) `Binomial(n, p)`.
///
/// The binomial distribution is a discrete probability distribution
/// which describes the probability of seeing `k` successes in `n`
/// independent trials, each of which has success probability `p`.
///
/// # Density function
///
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
///
/// # Plot
///
/// The following plot of the binomial distribution illustrates the
/// probability of `k` successes out of `n = 10` trials with `p = 0.2`
/// and `p = 0.6` for `0 <= k <= n`.
///
/// ![Binomial distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/binomial.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Binomial, Distribution};
///
/// let bin = Binomial::new(20, 0.3).unwrap();
/// let v = bin.sample(&mut rand::rng());
/// println!("{} is from a binomial distribution", v);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Binomial {
method: Method,
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
enum Method {
Binv(Binv, bool),
Btpe(Btpe, bool),
Poisson(crate::poisson::KnuthMethod<f64>),
Constant(u64),
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct Binv {
r: f64,
s: f64,
a: f64,
n: u64,
}
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
struct Btpe {
n: u64,
p: f64,
m: i64,
p1: f64,
}
/// Error type returned from [`Binomial::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
// Marked non_exhaustive to allow a new error code in the solution to #1378.
#[non_exhaustive]
pub enum Error {
/// `p < 0` or `nan`.
ProbabilityTooSmall,
/// `p > 1`.
ProbabilityTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ProbabilityTooSmall => "p < 0 or is NaN in binomial distribution",
Error::ProbabilityTooLarge => "p > 1 in binomial distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl Binomial {
/// Construct a new `Binomial` with the given shape parameters `n` (number
/// of trials) and `p` (probability of success).
pub fn new(n: u64, p: f64) -> Result<Binomial, Error> {
if !(p >= 0.0) {
return Err(Error::ProbabilityTooSmall);
}
if !(p <= 1.0) {
return Err(Error::ProbabilityTooLarge);
}
if p == 0.0 {
return Ok(Binomial {
method: Method::Constant(0),
});
}
if p == 1.0 {
return Ok(Binomial {
method: Method::Constant(n),
});
}
// The binomial distribution is symmetrical with respect to p -> 1-p
let flipped = p > 0.5;
let p = if flipped { 1.0 - p } else { p };
// For small n * min(p, 1 - p), the BINV algorithm based on the inverse
// transformation of the binomial distribution is efficient. Otherwise,
// the BTPE algorithm is used.
//
// Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1988. Binomial
// random variate generation. Commun. ACM 31, 2 (February 1988),
// 216-222. http://dx.doi.org/10.1145/42372.42381
// Threshold for preferring the BINV algorithm. The paper suggests 10,
// Ranlib uses 30, and GSL uses 14.
const BINV_THRESHOLD: f64 = 10.;
let np = n as f64 * p;
let method = if np < BINV_THRESHOLD {
let q = 1.0 - p;
if q == 1.0 {
// p is so small that this is extremely close to a Poisson distribution.
// The flipped case cannot occur here.
Method::Poisson(crate::poisson::KnuthMethod::new(np))
} else {
let s = p / q;
Method::Binv(
Binv {
r: q.powf(n as f64),
s,
a: (n as f64 + 1.0) * s,
n,
},
flipped,
)
}
} else {
let q = 1.0 - p;
let npq = np * q;
let p1 = (2.195 * npq.sqrt() - 4.6 * q).floor() + 0.5;
let f_m = np + p;
let m = f64_to_i64(f_m);
Method::Btpe(Btpe { n, p, m, p1 }, flipped)
};
Ok(Binomial { method })
}
}
/// Convert a `f64` to an `i64`, panicking on overflow.
fn f64_to_i64(x: f64) -> i64 {
assert!(x < (i64::MAX as f64));
x as i64
}
fn binv<R: Rng + ?Sized>(binv: Binv, flipped: bool, rng: &mut R) -> u64 {
// Same value as in GSL.
// It is possible for BINV to get stuck, so we break if x > BINV_MAX_X and try again.
// It would be safer to set BINV_MAX_X to self.n, but it is extremely unlikely to be relevant.
// When n*p < 10, so is n*p*q which is the variance, so a result > 110 would be 100 / sqrt(10) = 31 standard deviations away.
const BINV_MAX_X: u64 = 110;
let sample = 'outer: loop {
let mut r = binv.r;
let mut u: f64 = rng.random();
let mut x = 0;
while u > r {
u -= r;
x += 1;
if x > BINV_MAX_X {
continue 'outer;
}
r *= binv.a / (x as f64) - binv.s;
}
break x;
};
if flipped {
binv.n - sample
} else {
sample
}
}
#[allow(clippy::many_single_char_names)] // Same names as in the reference.
fn btpe<R: Rng + ?Sized>(btpe: Btpe, flipped: bool, rng: &mut R) -> u64 {
// Threshold for using the squeeze algorithm. This can be freely
// chosen based on performance. Ranlib and GSL use 20.
const SQUEEZE_THRESHOLD: i64 = 20;
// Step 0: Calculate constants as functions of `n` and `p`.
let n = btpe.n as f64;
let np = n * btpe.p;
let q = 1. - btpe.p;
let npq = np * q;
let f_m = np + btpe.p;
let m = btpe.m;
// radius of triangle region, since height=1 also area of region
let p1 = btpe.p1;
// tip of triangle
let x_m = (m as f64) + 0.5;
// left edge of triangle
let x_l = x_m - p1;
// right edge of triangle
let x_r = x_m + p1;
let c = 0.134 + 20.5 / (15.3 + (m as f64));
// p1 + area of parallelogram region
let p2 = p1 * (1. + 2. * c);
fn lambda(a: f64) -> f64 {
a * (1. + 0.5 * a)
}
let lambda_l = lambda((f_m - x_l) / (f_m - x_l * btpe.p));
let lambda_r = lambda((x_r - f_m) / (x_r * q));
let p3 = p2 + c / lambda_l;
let p4 = p3 + c / lambda_r;
// return value
let mut y: i64;
let gen_u = Uniform::new(0., p4).unwrap();
let gen_v = Uniform::new(0., 1.).unwrap();
loop {
// Step 1: Generate `u` for selecting the region. If region 1 is
// selected, generate a triangularly distributed variate.
let u = gen_u.sample(rng);
let mut v = gen_v.sample(rng);
if !(u > p1) {
y = f64_to_i64(x_m - p1 * v + u);
break;
}
if !(u > p2) {
// Step 2: Region 2, parallelograms. Check if region 2 is
// used. If so, generate `y`.
let x = x_l + (u - p1) / c;
v = v * c + 1.0 - (x - x_m).abs() / p1;
if v > 1. {
continue;
} else {
y = f64_to_i64(x);
}
} else if !(u > p3) {
// Step 3: Region 3, left exponential tail.
y = f64_to_i64(x_l + v.ln() / lambda_l);
if y < 0 {
continue;
} else {
v *= (u - p2) * lambda_l;
}
} else {
// Step 4: Region 4, right exponential tail.
y = f64_to_i64(x_r - v.ln() / lambda_r);
if y > 0 && (y as u64) > btpe.n {
continue;
} else {
v *= (u - p3) * lambda_r;
}
}
// Step 5: Acceptance/rejection comparison.
// Step 5.0: Test for appropriate method of evaluating f(y).
let k = (y - m).abs();
if !(k > SQUEEZE_THRESHOLD && (k as f64) < 0.5 * npq - 1.) {
// Step 5.1: Evaluate f(y) via the recursive relationship. Start the
// search from the mode.
let s = btpe.p / q;
let a = s * (n + 1.);
let mut f = 1.0;
match m.cmp(&y) {
Ordering::Less => {
let mut i = m;
loop {
i += 1;
f *= a / (i as f64) - s;
if i == y {
break;
}
}
}
Ordering::Greater => {
let mut i = y;
loop {
i += 1;
f /= a / (i as f64) - s;
if i == m {
break;
}
}
}
Ordering::Equal => {}
}
if v > f {
continue;
} else {
break;
}
}
// Step 5.2: Squeezing. Check the value of ln(v) against upper and
// lower bound of ln(f(y)).
let k = k as f64;
let rho = (k / npq) * ((k * (k / 3. + 0.625) + 1. / 6.) / npq + 0.5);
let t = -0.5 * k * k / npq;
let alpha = v.ln();
if alpha < t - rho {
break;
}
if alpha > t + rho {
continue;
}
// Step 5.3: Final acceptance/rejection test.
let x1 = (y + 1) as f64;
let f1 = (m + 1) as f64;
let z = (f64_to_i64(n) + 1 - m) as f64;
let w = (f64_to_i64(n) - y + 1) as f64;
fn stirling(a: f64) -> f64 {
let a2 = a * a;
(13860. - (462. - (132. - (99. - 140. / a2) / a2) / a2) / a2) / a / 166320.
}
if alpha
> x_m * (f1 / x1).ln()
+ (n - (m as f64) + 0.5) * (z / w).ln()
+ ((y - m) as f64) * (w * btpe.p / (x1 * q)).ln()
// We use the signs from the GSL implementation, which are
// different than the ones in the reference. According to
// the GSL authors, the new signs were verified to be
// correct by one of the original designers of the
// algorithm.
+ stirling(f1)
+ stirling(z)
- stirling(x1)
- stirling(w)
{
continue;
}
break;
}
assert!(y >= 0);
let y = y as u64;
if flipped {
btpe.n - y
} else {
y
}
}
impl Distribution<u64> for Binomial {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
match self.method {
Method::Binv(binv_para, flipped) => binv(binv_para, flipped, rng),
Method::Btpe(btpe_para, flipped) => btpe(btpe_para, flipped, rng),
Method::Poisson(poisson) => poisson.sample(rng) as u64,
Method::Constant(c) => c,
}
}
}
#[cfg(test)]
mod test {
use super::Binomial;
use crate::Distribution;
use rand::Rng;
fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
let binomial = Binomial::new(n, p).unwrap();
let expected_mean = n as f64 * p;
let expected_variance = n as f64 * p * (1.0 - p);
let mut results = [0.0; 1000];
for i in results.iter_mut() {
*i = binomial.sample(rng) as f64;
}
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean - expected_mean).abs() < expected_mean / 50.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn test_binomial() {
let mut rng = crate::test::rng(351);
test_binomial_mean_and_variance(150, 0.1, &mut rng);
test_binomial_mean_and_variance(70, 0.6, &mut rng);
test_binomial_mean_and_variance(40, 0.5, &mut rng);
test_binomial_mean_and_variance(20, 0.7, &mut rng);
test_binomial_mean_and_variance(20, 0.5, &mut rng);
test_binomial_mean_and_variance(1 << 61, 1e-17, &mut rng);
test_binomial_mean_and_variance(u64::MAX, 1e-19, &mut rng);
}
#[test]
fn test_binomial_end_points() {
let mut rng = crate::test::rng(352);
assert_eq!(rng.sample(Binomial::new(20, 0.0).unwrap()), 0);
assert_eq!(rng.sample(Binomial::new(20, 1.0).unwrap()), 20);
}
#[test]
#[should_panic]
fn test_binomial_invalid_lambda_neg() {
Binomial::new(20, -10.0).unwrap();
}
#[test]
fn binomial_distributions_can_be_compared() {
assert_eq!(Binomial::new(1, 1.0), Binomial::new(1, 1.0));
}
#[test]
fn binomial_avoid_infinite_loop() {
let dist = Binomial::new(16000000, 3.1444753148558566e-10).unwrap();
let mut sum: u64 = 0;
let mut rng = crate::test::rng(742);
for _ in 0..100_000 {
sum = sum.wrapping_add(dist.sample(&mut rng));
}
assert_ne!(sum, 0);
}
}