rand_distr/triangular.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The triangular distribution.
use crate::{Distribution, StandardUniform};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [triangular distribution](https://en.wikipedia.org/wiki/Triangular_distribution) `Triangular(min, max, mode)`.
///
/// A continuous probability distribution parameterised by a range, and a mode
/// (most likely value) within that range.
///
/// The probability density function is triangular. For a similar distribution
/// with a smooth PDF, see the [`Pert`] distribution.
///
/// # Plot
///
/// The following plot shows the triangular distribution with various values of
/// `min`, `max`, and `mode`.
///
/// ![Triangular distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/triangular.svg)
///
/// # Example
///
/// ```rust
/// use rand_distr::{Triangular, Distribution};
///
/// let d = Triangular::new(0., 5., 2.5).unwrap();
/// let v = d.sample(&mut rand::rng());
/// println!("{} is from a triangular distribution", v);
/// ```
///
/// [`Pert`]: crate::Pert
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Triangular<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
min: F,
max: F,
mode: F,
}
/// Error type returned from [`Triangular::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum TriangularError {
/// `max < min` or `min` or `max` is NaN.
RangeTooSmall,
/// `mode < min` or `mode > max` or `mode` is NaN.
ModeRange,
}
impl fmt::Display for TriangularError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
TriangularError::RangeTooSmall => {
"requirement min <= max is not met in triangular distribution"
}
TriangularError::ModeRange => "mode is outside [min, max] in triangular distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for TriangularError {}
impl<F> Triangular<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
/// Set up the Triangular distribution with defined `min`, `max` and `mode`.
#[inline]
pub fn new(min: F, max: F, mode: F) -> Result<Triangular<F>, TriangularError> {
if !(max >= min) {
return Err(TriangularError::RangeTooSmall);
}
if !(mode >= min && max >= mode) {
return Err(TriangularError::ModeRange);
}
Ok(Triangular { min, max, mode })
}
}
impl<F> Distribution<F> for Triangular<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let f: F = rng.sample(StandardUniform);
let diff_mode_min = self.mode - self.min;
let range = self.max - self.min;
let f_range = f * range;
if f_range < diff_mode_min {
self.min + (f_range * diff_mode_min).sqrt()
} else {
self.max - ((range - f_range) * (self.max - self.mode)).sqrt()
}
}
}
#[cfg(test)]
mod test {
use super::*;
use rand::{rngs::mock, Rng};
#[test]
fn test_triangular() {
let mut half_rng = mock::StepRng::new(0x8000_0000_0000_0000, 0);
assert_eq!(half_rng.random::<f64>(), 0.5);
for &(min, max, mode, median) in &[
(-1., 1., 0., 0.),
(1., 2., 1., 2. - 0.5f64.sqrt()),
(5., 25., 25., 5. + 200f64.sqrt()),
(1e-5, 1e5, 1e-3, 1e5 - 4999999949.5f64.sqrt()),
(0., 1., 0.9, 0.45f64.sqrt()),
(-4., -0.5, -2., -4.0 + 3.5f64.sqrt()),
] {
#[cfg(feature = "std")]
std::println!("{} {} {} {}", min, max, mode, median);
let distr = Triangular::new(min, max, mode).unwrap();
// Test correct value at median:
assert_eq!(distr.sample(&mut half_rng), median);
}
for &(min, max, mode) in &[(-1., 1., 2.), (-1., 1., -2.), (2., 1., 1.)] {
assert!(Triangular::new(min, max, mode).is_err());
}
}
#[test]
fn triangular_distributions_can_be_compared() {
assert_eq!(
Triangular::new(1.0, 3.0, 2.0),
Triangular::new(1.0, 3.0, 2.0)
);
}
}