rand_distr/
beta.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Beta distribution.

use crate::{Distribution, Open01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// The algorithm used for sampling the Beta distribution.
///
/// Reference:
///
/// R. C. H. Cheng (1978).
/// Generating beta variates with nonintegral shape parameters.
/// Communications of the ACM 21, 317-322.
/// https://doi.org/10.1145/359460.359482
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
enum BetaAlgorithm<N> {
    BB(BB<N>),
    BC(BC<N>),
}

/// Algorithm BB for `min(alpha, beta) > 1`.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
struct BB<N> {
    alpha: N,
    beta: N,
    gamma: N,
}

/// Algorithm BC for `min(alpha, beta) <= 1`.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
struct BC<N> {
    alpha: N,
    beta: N,
    kappa1: N,
    kappa2: N,
}

/// The [Beta distribution](https://en.wikipedia.org/wiki/Beta_distribution) `Beta(α, β)`.
///
/// The Beta distribution is a continuous probability distribution
/// defined on the interval `[0, 1]`. It is the conjugate prior for the
/// parameter `p` of the [`Binomial`][crate::Binomial] distribution.
///
/// It has two shape parameters `α` (alpha) and `β` (beta) which control
/// the shape of the distribution. Both `a` and `β` must be greater than zero.
/// The distribution is symmetric when `α = β`.
///
/// # Plot
///
/// The plot shows the Beta distribution with various combinations
/// of `α` and `β`.
///
/// ![Beta distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/beta.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Beta};
///
/// let beta = Beta::new(2.0, 5.0).unwrap();
/// let v = beta.sample(&mut rand::rng());
/// println!("{} is from a Beta(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    a: F,
    b: F,
    switched_params: bool,
    algorithm: BetaAlgorithm<F>,
}

/// Error type returned from [`Beta::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Error {
    /// `alpha <= 0` or `nan`.
    AlphaTooSmall,
    /// `beta <= 0` or `nan`.
    BetaTooSmall,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::AlphaTooSmall => "alpha is not positive in beta distribution",
            Error::BetaTooSmall => "beta is not positive in beta distribution",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

impl<F> Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    /// Construct an object representing the `Beta(alpha, beta)`
    /// distribution.
    pub fn new(alpha: F, beta: F) -> Result<Beta<F>, Error> {
        if !(alpha > F::zero()) {
            return Err(Error::AlphaTooSmall);
        }
        if !(beta > F::zero()) {
            return Err(Error::BetaTooSmall);
        }
        // From now on, we use the notation from the reference,
        // i.e. `alpha` and `beta` are renamed to `a0` and `b0`.
        let (a0, b0) = (alpha, beta);
        let (a, b, switched_params) = if a0 < b0 {
            (a0, b0, false)
        } else {
            (b0, a0, true)
        };
        if a > F::one() {
            // Algorithm BB
            let alpha = a + b;

            let two = F::from(2.).unwrap();
            let beta_numer = alpha - two;
            let beta_denom = two * a * b - alpha;
            let beta = (beta_numer / beta_denom).sqrt();

            let gamma = a + F::one() / beta;

            Ok(Beta {
                a,
                b,
                switched_params,
                algorithm: BetaAlgorithm::BB(BB { alpha, beta, gamma }),
            })
        } else {
            // Algorithm BC
            //
            // Here `a` is the maximum instead of the minimum.
            let (a, b, switched_params) = (b, a, !switched_params);
            let alpha = a + b;
            let beta = F::one() / b;
            let delta = F::one() + a - b;
            let kappa1 = delta
                * (F::from(1. / 18. / 4.).unwrap() + F::from(3. / 18. / 4.).unwrap() * b)
                / (a * beta - F::from(14. / 18.).unwrap());
            let kappa2 = F::from(0.25).unwrap()
                + (F::from(0.5).unwrap() + F::from(0.25).unwrap() / delta) * b;

            Ok(Beta {
                a,
                b,
                switched_params,
                algorithm: BetaAlgorithm::BC(BC {
                    alpha,
                    beta,
                    kappa1,
                    kappa2,
                }),
            })
        }
    }
}

impl<F> Distribution<F> for Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let mut w;
        match self.algorithm {
            BetaAlgorithm::BB(algo) => {
                loop {
                    // 1.
                    let u1 = rng.sample(Open01);
                    let u2 = rng.sample(Open01);
                    let v = algo.beta * (u1 / (F::one() - u1)).ln();
                    w = self.a * v.exp();
                    let z = u1 * u1 * u2;
                    let r = algo.gamma * v - F::from(4.).unwrap().ln();
                    let s = self.a + r - w;
                    // 2.
                    if s + F::one() + F::from(5.).unwrap().ln() >= F::from(5.).unwrap() * z {
                        break;
                    }
                    // 3.
                    let t = z.ln();
                    if s >= t {
                        break;
                    }
                    // 4.
                    if !(r + algo.alpha * (algo.alpha / (self.b + w)).ln() < t) {
                        break;
                    }
                }
            }
            BetaAlgorithm::BC(algo) => {
                loop {
                    let z;
                    // 1.
                    let u1 = rng.sample(Open01);
                    let u2 = rng.sample(Open01);
                    if u1 < F::from(0.5).unwrap() {
                        // 2.
                        let y = u1 * u2;
                        z = u1 * y;
                        if F::from(0.25).unwrap() * u2 + z - y >= algo.kappa1 {
                            continue;
                        }
                    } else {
                        // 3.
                        z = u1 * u1 * u2;
                        if z <= F::from(0.25).unwrap() {
                            let v = algo.beta * (u1 / (F::one() - u1)).ln();
                            w = self.a * v.exp();
                            break;
                        }
                        // 4.
                        if z >= algo.kappa2 {
                            continue;
                        }
                    }
                    // 5.
                    let v = algo.beta * (u1 / (F::one() - u1)).ln();
                    w = self.a * v.exp();
                    if !(algo.alpha * ((algo.alpha / (self.b + w)).ln() + v)
                        - F::from(4.).unwrap().ln()
                        < z.ln())
                    {
                        break;
                    };
                }
            }
        };
        // 5. for BB, 6. for BC
        if !self.switched_params {
            if w == F::infinity() {
                // Assuming `b` is finite, for large `w`:
                return F::one();
            }
            w / (self.b + w)
        } else {
            self.b / (self.b + w)
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_beta() {
        let beta = Beta::new(1.0, 2.0).unwrap();
        let mut rng = crate::test::rng(201);
        for _ in 0..1000 {
            beta.sample(&mut rng);
        }
    }

    #[test]
    #[should_panic]
    fn test_beta_invalid_dof() {
        Beta::new(0., 0.).unwrap();
    }

    #[test]
    fn test_beta_small_param() {
        let beta = Beta::<f64>::new(1e-3, 1e-3).unwrap();
        let mut rng = crate::test::rng(206);
        for i in 0..1000 {
            assert!(!beta.sample(&mut rng).is_nan(), "failed at i={}", i);
        }
    }

    #[test]
    fn beta_distributions_can_be_compared() {
        assert_eq!(Beta::new(1.0, 2.0), Beta::new(1.0, 2.0));
    }
}