1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Fréchet distribution `Fréchet(μ, σ, α)`.
use crate::{Distribution, OpenClosed01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [Fréchet distribution](https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution) `Fréchet(α, μ, σ)`.
///
/// The Fréchet distribution is a continuous probability distribution
/// with location parameter `μ` (`mu`), scale parameter `σ` (`sigma`),
/// and shape parameter `α` (`alpha`). It describes the distribution
/// of the maximum (or minimum) of a number of random variables.
/// It is also known as the Type II extreme value distribution.
///
/// # Density function
///
/// `f(x) = [(x - μ) / σ]^(-1 - α) exp[-(x - μ) / σ]^(-α) α / σ`
///
/// # Plot
///
/// The plot shows the Fréchet distribution with various values of `μ`, `σ`, and `α`.
/// Note how the location parameter `μ` shifts the distribution along the x-axis,
/// the scale parameter `σ` stretches or compresses the distribution along the x-axis,
/// and the shape parameter `α` changes the tail behavior.
///
/// ![Fréchet distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/frechet.svg)
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::Frechet;
///
/// let val: f64 = thread_rng().sample(Frechet::new(0.0, 1.0, 1.0).unwrap());
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Frechet<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
location: F,
scale: F,
shape: F,
}
/// Error type returned from [`Frechet::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// location is infinite or NaN
LocationNotFinite,
/// scale is not finite positive number
ScaleNotPositive,
/// shape is not finite positive number
ShapeNotPositive,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::LocationNotFinite => "location is not finite in Frechet distribution",
Error::ScaleNotPositive => "scale is not positive and finite in Frechet distribution",
Error::ShapeNotPositive => "shape is not positive and finite in Frechet distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Frechet<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
/// Construct a new `Frechet` distribution with given `location`, `scale`, and `shape`.
pub fn new(location: F, scale: F, shape: F) -> Result<Frechet<F>, Error> {
if scale <= F::zero() || scale.is_infinite() || scale.is_nan() {
return Err(Error::ScaleNotPositive);
}
if shape <= F::zero() || shape.is_infinite() || shape.is_nan() {
return Err(Error::ShapeNotPositive);
}
if location.is_infinite() || location.is_nan() {
return Err(Error::LocationNotFinite);
}
Ok(Frechet {
location,
scale,
shape,
})
}
}
impl<F> Distribution<F> for Frechet<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let x: F = rng.sample(OpenClosed01);
self.location + self.scale * (-x.ln()).powf(-self.shape.recip())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn test_zero_scale() {
Frechet::new(0.0, 0.0, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_scale() {
Frechet::new(0.0, f64::INFINITY, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_nan_scale() {
Frechet::new(0.0, f64::NAN, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_zero_shape() {
Frechet::new(0.0, 1.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_shape() {
Frechet::new(0.0, 1.0, f64::INFINITY).unwrap();
}
#[test]
#[should_panic]
fn test_nan_shape() {
Frechet::new(0.0, 1.0, f64::NAN).unwrap();
}
#[test]
#[should_panic]
fn test_infinite_location() {
Frechet::new(f64::INFINITY, 1.0, 1.0).unwrap();
}
#[test]
#[should_panic]
fn test_nan_location() {
Frechet::new(f64::NAN, 1.0, 1.0).unwrap();
}
#[test]
fn test_sample_against_cdf() {
fn quantile_function(x: f64) -> f64 {
(-x.ln()).recip()
}
let location = 0.0;
let scale = 1.0;
let shape = 1.0;
let iterations = 100_000;
let increment = 1.0 / iterations as f64;
let probabilities = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
let mut quantiles = [0.0; 9];
for (i, p) in probabilities.iter().enumerate() {
quantiles[i] = quantile_function(*p);
}
let mut proportions = [0.0; 9];
let d = Frechet::new(location, scale, shape).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..iterations {
let replicate = d.sample(&mut rng);
for (i, q) in quantiles.iter().enumerate() {
if replicate < *q {
proportions[i] += increment;
}
}
}
assert!(proportions
.iter()
.zip(&probabilities)
.all(|(p_hat, p)| (p_hat - p).abs() < 0.003))
}
#[test]
fn frechet_distributions_can_be_compared() {
assert_eq!(Frechet::new(1.0, 2.0, 3.0), Frechet::new(1.0, 2.0, 3.0));
}
}