rand_distr/pareto.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Pareto distribution `Pareto(xₘ, α)`.
use crate::{Distribution, OpenClosed01};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [Pareto distribution](https://en.wikipedia.org/wiki/Pareto_distribution) `Pareto(xₘ, α)`.
///
/// The Pareto distribution is a continuous probability distribution with
/// scale parameter `xₘ` ( or `k`) and shape parameter `α`.
///
/// # Plot
///
/// The following plot shows the Pareto distribution with various values of
/// `xₘ` and `α`.
/// Note how the shape parameter `α` corresponds to the height of the jump
/// in density at `x = xₘ`, and to the rate of decay in the tail.
///
/// ![Pareto distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/pareto.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Pareto;
///
/// let val: f64 = rand::rng().sample(Pareto::new(1., 2.).unwrap());
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Pareto<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
scale: F,
inv_neg_shape: F,
}
/// Error type returned from [`Pareto::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `scale <= 0` or `nan`.
ScaleTooSmall,
/// `shape <= 0` or `nan`.
ShapeTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleTooSmall => "scale is not positive in Pareto distribution",
Error::ShapeTooSmall => "shape is not positive in Pareto distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Pareto<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
/// Construct a new Pareto distribution with given `scale` and `shape`.
///
/// In the literature, `scale` is commonly written as x<sub>m</sub> or k and
/// `shape` is often written as α.
pub fn new(scale: F, shape: F) -> Result<Pareto<F>, Error> {
let zero = F::zero();
if !(scale > zero) {
return Err(Error::ScaleTooSmall);
}
if !(shape > zero) {
return Err(Error::ShapeTooSmall);
}
Ok(Pareto {
scale,
inv_neg_shape: F::from(-1.0).unwrap() / shape,
})
}
}
impl<F> Distribution<F> for Pareto<F>
where
F: Float,
OpenClosed01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let u: F = OpenClosed01.sample(rng);
self.scale * u.powf(self.inv_neg_shape)
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::fmt::{Debug, Display, LowerExp};
#[test]
#[should_panic]
fn invalid() {
Pareto::new(0., 0.).unwrap();
}
#[test]
fn sample() {
let scale = 1.0;
let shape = 2.0;
let d = Pareto::new(scale, shape).unwrap();
let mut rng = crate::test::rng(1);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= scale);
}
}
#[test]
fn value_stability() {
fn test_samples<F: Float + Debug + Display + LowerExp, D: Distribution<F>>(
distr: D,
thresh: F,
expected: &[F],
) {
let mut rng = crate::test::rng(213);
for v in expected {
let x = rng.sample(&distr);
assert_almost_eq!(x, *v, thresh);
}
}
test_samples(
Pareto::new(1f32, 1.0).unwrap(),
1e-6,
&[1.0423688, 2.1235929, 4.132709, 1.4679428],
);
test_samples(
Pareto::new(2.0, 0.5).unwrap(),
1e-14,
&[
9.019295276219136,
4.3097126018270595,
6.837815045397157,
105.8826669383772,
],
);
}
#[test]
fn pareto_distributions_can_be_compared() {
assert_eq!(Pareto::new(1.0, 2.0), Pareto::new(1.0, 2.0));
}
}