1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The PERT distribution.

use crate::{Beta, Distribution, Exp1, Open01, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;

/// The [PERT distribution](https://en.wikipedia.org/wiki/PERT_distribution) `PERT(min, max, mode, shape)`.
///
/// Similar to the [`Triangular`] distribution, the PERT distribution is
/// parameterised by a range and a mode within that range. Unlike the
/// [`Triangular`] distribution, the probability density function of the PERT
/// distribution is smooth, with a configurable weighting around the mode.
///
/// # Plot
///
/// The following plot shows the PERT distribution with `min = -1`, `max = 1`,
/// and various values of `mode` and `shape`.
///
/// ![PERT distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/pert.svg)
///
/// # Example
///
/// ```rust
/// use rand_distr::{Pert, Distribution};
///
/// let d = Pert::new(0., 5.).with_mode(2.5).unwrap();
/// let v = d.sample(&mut rand::thread_rng());
/// println!("{} is from a PERT distribution", v);
/// ```
///
/// [`Triangular`]: crate::Triangular
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Pert<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    min: F,
    range: F,
    beta: Beta<F>,
}

/// Error type returned from [`Pert`] constructors.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum PertError {
    /// `max < min` or `min` or `max` is NaN.
    RangeTooSmall,
    /// `mode < min` or `mode > max` or `mode` is NaN.
    ModeRange,
    /// `shape < 0` or `shape` is NaN
    ShapeTooSmall,
}

impl fmt::Display for PertError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            PertError::RangeTooSmall => "requirement min < max is not met in PERT distribution",
            PertError::ModeRange => "mode is outside [min, max] in PERT distribution",
            PertError::ShapeTooSmall => "shape < 0 or is NaN in PERT distribution",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for PertError {}

impl<F> Pert<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Construct a PERT distribution with defined `min`, `max`
    ///
    /// # Example
    ///
    /// ```
    /// use rand_distr::Pert;
    /// let pert_dist = Pert::new(0.0, 10.0)
    ///     .with_shape(3.5)
    ///     .with_mean(3.0)
    ///     .unwrap();
    /// # let _unused: Pert<f64> = pert_dist;
    /// ```
    #[allow(clippy::new_ret_no_self)]
    #[inline]
    pub fn new(min: F, max: F) -> PertBuilder<F> {
        let shape = F::from(4.0).unwrap();
        PertBuilder { min, max, shape }
    }
}

/// Struct used to build a [`Pert`]
#[derive(Debug)]
pub struct PertBuilder<F> {
    min: F,
    max: F,
    shape: F,
}

impl<F> PertBuilder<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Set the shape parameter
    ///
    /// If not specified, this defaults to 4.
    #[inline]
    pub fn with_shape(mut self, shape: F) -> PertBuilder<F> {
        self.shape = shape;
        self
    }

    /// Specify the mean
    #[inline]
    pub fn with_mean(self, mean: F) -> Result<Pert<F>, PertError> {
        let two = F::from(2.0).unwrap();
        let mode = ((self.shape + two) * mean - self.min - self.max) / self.shape;
        self.with_mode(mode)
    }

    /// Specify the mode
    #[inline]
    pub fn with_mode(self, mode: F) -> Result<Pert<F>, PertError> {
        if !(self.max > self.min) {
            return Err(PertError::RangeTooSmall);
        }
        if !(mode >= self.min && self.max >= mode) {
            return Err(PertError::ModeRange);
        }
        if !(self.shape >= F::from(0.).unwrap()) {
            return Err(PertError::ShapeTooSmall);
        }

        let (min, max, shape) = (self.min, self.max, self.shape);
        let range = max - min;
        let v = F::from(1.0).unwrap() + shape * (mode - min) / range;
        let w = F::from(1.0).unwrap() + shape * (max - mode) / range;
        let beta = Beta::new(v, w).map_err(|_| PertError::RangeTooSmall)?;
        Ok(Pert { min, range, beta })
    }
}

impl<F> Distribution<F> for Pert<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        self.beta.sample(rng) * self.range + self.min
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_pert() {
        for &(min, max, mode) in &[(-1., 1., 0.), (1., 2., 1.), (5., 25., 25.)] {
            let _distr = Pert::new(min, max).with_mode(mode).unwrap();
            // TODO: test correctness
        }

        for &(min, max, mode) in &[(-1., 1., 2.), (-1., 1., -2.), (2., 1., 1.)] {
            assert!(Pert::new(min, max).with_mode(mode).is_err());
        }
    }

    #[test]
    fn distributions_can_be_compared() {
        let (min, mode, max, shape) = (1.0, 2.0, 3.0, 4.0);
        let p1 = Pert::new(min, max).with_mode(mode).unwrap();
        let mean = (min + shape * mode + max) / (shape + 2.0);
        let p2 = Pert::new(min, max).with_mean(mean).unwrap();
        assert_eq!(p1, p2);
    }

    #[test]
    fn mode_almost_half_range() {
        assert!(Pert::new(0.0f32, 0.48258883).with_mode(0.24129441).is_ok());
    }

    #[test]
    fn almost_symmetric_about_zero() {
        let distr = Pert::new(-10f32, 10f32).with_mode(f32::EPSILON);
        assert!(distr.is_ok());
    }

    #[test]
    fn almost_symmetric() {
        let distr = Pert::new(0f32, 2f32).with_mode(1f32 + f32::EPSILON);
        assert!(distr.is_ok());
    }
}