rand_distr/zipf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Zipf distribution.
use crate::{Distribution, StandardUniform};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The Zipf (Zipfian) distribution `Zipf(n, s)`.
///
/// The samples follow [Zipf's law](https://en.wikipedia.org/wiki/Zipf%27s_law):
/// The frequency of each sample from a finite set of size `n` is inversely
/// proportional to a power of its frequency rank (with exponent `s`).
///
/// For large `n`, this converges to the [`Zeta`](crate::Zeta) distribution.
///
/// For `s = 0`, this becomes a [`uniform`](crate::Uniform) distribution.
///
/// # Plot
///
/// The following plot illustrates the Zipf distribution for `n = 10` and
/// various values of `s`.
///
/// ![Zipf distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/zipf.svg)
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::Zipf;
///
/// let val: f64 = rand::rng().sample(Zipf::new(10.0, 1.5).unwrap());
/// println!("{}", val);
/// ```
///
/// # Integer vs FP return type
///
/// This implementation uses floating-point (FP) logic internally. It may be
/// expected that the samples are no greater than `n`, thus it is reasonable to
/// cast generated samples to any integer type which can also represent `n`
/// (e.g. `distr.sample(&mut rng) as u64`).
///
/// # Implementation details
///
/// Implemented via [rejection sampling](https://en.wikipedia.org/wiki/Rejection_sampling),
/// due to Jason Crease[1].
///
/// [1]: https://jasoncrease.medium.com/rejection-sampling-the-zipf-distribution-6b359792cffa
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct Zipf<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
s: F,
t: F,
q: F,
}
/// Error type returned from [`Zipf::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `s < 0` or `nan`.
STooSmall,
/// `n < 1`.
NTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::STooSmall => "s < 0 or is NaN in Zipf distribution",
Error::NTooSmall => "n < 1 in Zipf distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> Zipf<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
/// Construct a new `Zipf` distribution for a set with `n` elements and a
/// frequency rank exponent `s`.
///
/// The parameter `n` is typically integral, however we use type
/// <pre><code>F: [Float]</code></pre> in order to permit very large values
/// and since our implementation requires a floating-point type.
#[inline]
pub fn new(n: F, s: F) -> Result<Zipf<F>, Error> {
if !(s >= F::zero()) {
return Err(Error::STooSmall);
}
if n < F::one() {
return Err(Error::NTooSmall);
}
let q = if s != F::one() {
// Make sure to calculate the division only once.
F::one() / (F::one() - s)
} else {
// This value is never used.
F::zero()
};
let t = if s != F::one() {
(n.powf(F::one() - s) - s) * q
} else {
F::one() + n.ln()
};
debug_assert!(t > F::zero());
Ok(Zipf { s, t, q })
}
/// Inverse cumulative density function
#[inline]
fn inv_cdf(&self, p: F) -> F {
let one = F::one();
let pt = p * self.t;
if pt <= one {
pt
} else if self.s != one {
(pt * (one - self.s) + self.s).powf(self.q)
} else {
(pt - one).exp()
}
}
}
impl<F> Distribution<F> for Zipf<F>
where
F: Float,
StandardUniform: Distribution<F>,
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let one = F::one();
loop {
let inv_b = self.inv_cdf(rng.sample(StandardUniform));
let x = (inv_b + one).floor();
let mut ratio = x.powf(-self.s);
if x > one {
ratio = ratio * inv_b.powf(self.s)
};
let y = rng.sample(StandardUniform);
if y < ratio {
return x;
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_samples<F: Float + fmt::Debug, D: Distribution<F>>(distr: D, zero: F, expected: &[F]) {
let mut rng = crate::test::rng(213);
let mut buf = [zero; 4];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
#[test]
#[should_panic]
fn zipf_s_too_small() {
Zipf::new(10., -1.).unwrap();
}
#[test]
#[should_panic]
fn zipf_n_too_small() {
Zipf::new(0., 1.).unwrap();
}
#[test]
#[should_panic]
fn zipf_nan() {
Zipf::new(10., f64::NAN).unwrap();
}
#[test]
fn zipf_sample() {
let d = Zipf::new(10., 0.5).unwrap();
let mut rng = crate::test::rng(2);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
}
#[test]
fn zipf_sample_s_1() {
let d = Zipf::new(10., 1.).unwrap();
let mut rng = crate::test::rng(2);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
}
#[test]
fn zipf_sample_s_0() {
let d = Zipf::new(10., 0.).unwrap();
let mut rng = crate::test::rng(2);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
// TODO: verify that this is a uniform distribution
}
#[test]
fn zipf_sample_large_n() {
let d = Zipf::new(f64::MAX, 1.5).unwrap();
let mut rng = crate::test::rng(2);
for _ in 0..1000 {
let r = d.sample(&mut rng);
assert!(r >= 1.);
}
// TODO: verify that this is a zeta distribution
}
#[test]
fn zipf_value_stability() {
test_samples(Zipf::new(10., 0.5).unwrap(), 0f32, &[10.0, 2.0, 6.0, 7.0]);
test_samples(Zipf::new(10., 2.0).unwrap(), 0f64, &[1.0, 2.0, 3.0, 2.0]);
}
#[test]
fn zipf_distributions_can_be_compared() {
assert_eq!(Zipf::new(1.0, 2.0), Zipf::new(1.0, 2.0));
}
}