1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Skew Normal distribution `SN(ξ, ω, α)`.
use crate::{Distribution, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;
/// The [skew normal distribution](https://en.wikipedia.org/wiki/Skew_normal_distribution) `SN(ξ, ω, α)`.
///
/// The skew normal distribution is a generalization of the
/// [`Normal`](crate::Normal) distribution to allow for non-zero skewness.
/// It has location parameter `ξ` (`xi`), scale parameter `ω` (`omega`),
/// and shape parameter `α` (`alpha`).
///
/// The `ξ` and `ω` parameters correspond to the mean `μ` and standard
/// deviation `σ` of the normal distribution, respectively.
/// The `α` parameter controls the skewness.
///
/// # Density function
///
/// It has the density function, for `scale > 0`,
/// `f(x) = 2 / scale * phi((x - location) / scale) * Phi(alpha * (x - location) / scale)`
/// where `phi` and `Phi` are the density and distribution of a standard normal variable.
///
/// # Plot
///
/// The following plot shows the skew normal distribution with `location = 0`, `scale = 1`
/// (corresponding to the [`standard normal distribution`](crate::StandardNormal)), and
/// various values of `shape`.
///
/// ![Skew normal distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/skew_normal.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{SkewNormal, Distribution};
///
/// // location 2, scale 3, shape 1
/// let skew_normal = SkewNormal::new(2.0, 3.0, 1.0).unwrap();
/// let v = skew_normal.sample(&mut rand::thread_rng());
/// println!("{} is from a SN(2, 3, 1) distribution", v)
/// ```
///
/// # Implementation details
///
/// We are using the algorithm from [A Method to Simulate the Skew Normal Distribution].
///
/// [skew normal distribution]: https://en.wikipedia.org/wiki/Skew_normal_distribution
/// [`Normal`]: struct.Normal.html
/// [A Method to Simulate the Skew Normal Distribution]: https://dx.doi.org/10.4236/am.2014.513201
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SkewNormal<F>
where
F: Float,
StandardNormal: Distribution<F>,
{
location: F,
scale: F,
shape: F,
}
/// Error type returned from [`SkewNormal::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// The scale parameter is not finite or it is less or equal to zero.
ScaleTooSmall,
/// The shape parameter is not finite.
BadShape,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleTooSmall => {
"scale parameter is either non-finite or it is less or equal to zero in skew normal distribution"
}
Error::BadShape => "shape parameter is non-finite in skew normal distribution",
})
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
impl<F> SkewNormal<F>
where
F: Float,
StandardNormal: Distribution<F>,
{
/// Construct, from location, scale and shape.
///
/// Parameters:
///
/// - location (unrestricted)
/// - scale (must be finite and larger than zero)
/// - shape (must be finite)
#[inline]
pub fn new(location: F, scale: F, shape: F) -> Result<SkewNormal<F>, Error> {
if !scale.is_finite() || !(scale > F::zero()) {
return Err(Error::ScaleTooSmall);
}
if !shape.is_finite() {
return Err(Error::BadShape);
}
Ok(SkewNormal {
location,
scale,
shape,
})
}
/// Returns the location of the distribution.
pub fn location(&self) -> F {
self.location
}
/// Returns the scale of the distribution.
pub fn scale(&self) -> F {
self.scale
}
/// Returns the shape of the distribution.
pub fn shape(&self) -> F {
self.shape
}
}
impl<F> Distribution<F> for SkewNormal<F>
where
F: Float,
StandardNormal: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let linear_map = |x: F| -> F { x * self.scale + self.location };
let u_1: F = rng.sample(StandardNormal);
if self.shape == F::zero() {
linear_map(u_1)
} else {
let u_2 = rng.sample(StandardNormal);
let (u, v) = (u_1.max(u_2), u_1.min(u_2));
if self.shape == -F::one() {
linear_map(v)
} else if self.shape == F::one() {
linear_map(u)
} else {
let normalized = ((F::one() + self.shape) * u + (F::one() - self.shape) * v)
/ ((F::one() + self.shape * self.shape).sqrt()
* F::from(core::f64::consts::SQRT_2).unwrap());
linear_map(normalized)
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
fn test_samples<F: Float + fmt::Debug, D: Distribution<F>>(distr: D, zero: F, expected: &[F]) {
let mut rng = crate::test::rng(213);
let mut buf = [zero; 4];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
#[test]
#[should_panic]
fn invalid_scale_nan() {
SkewNormal::new(0.0, f64::NAN, 0.0).unwrap();
}
#[test]
#[should_panic]
fn invalid_scale_zero() {
SkewNormal::new(0.0, 0.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn invalid_scale_negative() {
SkewNormal::new(0.0, -1.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn invalid_scale_infinite() {
SkewNormal::new(0.0, f64::INFINITY, 0.0).unwrap();
}
#[test]
#[should_panic]
fn invalid_shape_nan() {
SkewNormal::new(0.0, 1.0, f64::NAN).unwrap();
}
#[test]
#[should_panic]
fn invalid_shape_infinite() {
SkewNormal::new(0.0, 1.0, f64::INFINITY).unwrap();
}
#[test]
fn valid_location_nan() {
SkewNormal::new(f64::NAN, 1.0, 0.0).unwrap();
}
#[test]
fn skew_normal_value_stability() {
test_samples(
SkewNormal::new(0.0, 1.0, 0.0).unwrap(),
0f32,
&[-0.11844189, 0.781378, 0.06563994, -1.1932899],
);
test_samples(
SkewNormal::new(0.0, 1.0, 0.0).unwrap(),
0f64,
&[
-0.11844188827977231,
0.7813779637772346,
0.06563993969580051,
-1.1932899004186373,
],
);
test_samples(
SkewNormal::new(f64::INFINITY, 1.0, 0.0).unwrap(),
0f64,
&[f64::INFINITY, f64::INFINITY, f64::INFINITY, f64::INFINITY],
);
test_samples(
SkewNormal::new(f64::NEG_INFINITY, 1.0, 0.0).unwrap(),
0f64,
&[
f64::NEG_INFINITY,
f64::NEG_INFINITY,
f64::NEG_INFINITY,
f64::NEG_INFINITY,
],
);
}
#[test]
fn skew_normal_value_location_nan() {
let skew_normal = SkewNormal::new(f64::NAN, 1.0, 0.0).unwrap();
let mut rng = crate::test::rng(213);
let mut buf = [0.0; 4];
for x in &mut buf {
*x = rng.sample(skew_normal);
}
for value in buf.iter() {
assert!(value.is_nan());
}
}
#[test]
fn skew_normal_distributions_can_be_compared() {
assert_eq!(
SkewNormal::new(1.0, 2.0, 3.0),
SkewNormal::new(1.0, 2.0, 3.0)
);
}
}