1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2021 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Skew Normal distribution `SN(ξ, ω, α)`.

use crate::{Distribution, StandardNormal};
use core::fmt;
use num_traits::Float;
use rand::Rng;

/// The [skew normal distribution](https://en.wikipedia.org/wiki/Skew_normal_distribution) `SN(ξ, ω, α)`.
///
/// The skew normal distribution is a generalization of the
/// [`Normal`](crate::Normal) distribution to allow for non-zero skewness.
/// It has location parameter `ξ` (`xi`), scale parameter `ω` (`omega`),
/// and shape parameter `α` (`alpha`).
///
/// The `ξ` and `ω` parameters correspond to the mean `μ` and standard
/// deviation `σ` of the normal distribution, respectively.
/// The `α` parameter controls the skewness.
///
/// # Density function
///
/// It has the density function, for `scale > 0`,
/// `f(x) = 2 / scale * phi((x - location) / scale) * Phi(alpha * (x - location) / scale)`
/// where `phi` and `Phi` are the density and distribution of a standard normal variable.
///
/// # Plot
///
/// The following plot shows the skew normal distribution with `location = 0`, `scale = 1`
/// (corresponding to the [`standard normal distribution`](crate::StandardNormal)), and
/// various values of `shape`.
///
/// ![Skew normal distribution](https://raw.githubusercontent.com/rust-random/charts/main/charts/skew_normal.svg)
///
/// # Example
///
/// ```
/// use rand_distr::{SkewNormal, Distribution};
///
/// // location 2, scale 3, shape 1
/// let skew_normal = SkewNormal::new(2.0, 3.0, 1.0).unwrap();
/// let v = skew_normal.sample(&mut rand::thread_rng());
/// println!("{} is from a SN(2, 3, 1) distribution", v)
/// ```
///
/// # Implementation details
///
/// We are using the algorithm from [A Method to Simulate the Skew Normal Distribution].
///
/// [skew normal distribution]: https://en.wikipedia.org/wiki/Skew_normal_distribution
/// [`Normal`]: struct.Normal.html
/// [A Method to Simulate the Skew Normal Distribution]: https://dx.doi.org/10.4236/am.2014.513201
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct SkewNormal<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
{
    location: F,
    scale: F,
    shape: F,
}

/// Error type returned from [`SkewNormal::new`].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// The scale parameter is not finite or it is less or equal to zero.
    ScaleTooSmall,
    /// The shape parameter is not finite.
    BadShape,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::ScaleTooSmall => {
                "scale parameter is either non-finite or it is less or equal to zero in skew normal distribution"
            }
            Error::BadShape => "shape parameter is non-finite in skew normal distribution",
        })
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

impl<F> SkewNormal<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
{
    /// Construct, from location, scale and shape.
    ///
    /// Parameters:
    ///
    /// -   location (unrestricted)
    /// -   scale (must be finite and larger than zero)
    /// -   shape (must be finite)
    #[inline]
    pub fn new(location: F, scale: F, shape: F) -> Result<SkewNormal<F>, Error> {
        if !scale.is_finite() || !(scale > F::zero()) {
            return Err(Error::ScaleTooSmall);
        }
        if !shape.is_finite() {
            return Err(Error::BadShape);
        }
        Ok(SkewNormal {
            location,
            scale,
            shape,
        })
    }

    /// Returns the location of the distribution.
    pub fn location(&self) -> F {
        self.location
    }

    /// Returns the scale of the distribution.
    pub fn scale(&self) -> F {
        self.scale
    }

    /// Returns the shape of the distribution.
    pub fn shape(&self) -> F {
        self.shape
    }
}

impl<F> Distribution<F> for SkewNormal<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let linear_map = |x: F| -> F { x * self.scale + self.location };
        let u_1: F = rng.sample(StandardNormal);
        if self.shape == F::zero() {
            linear_map(u_1)
        } else {
            let u_2 = rng.sample(StandardNormal);
            let (u, v) = (u_1.max(u_2), u_1.min(u_2));
            if self.shape == -F::one() {
                linear_map(v)
            } else if self.shape == F::one() {
                linear_map(u)
            } else {
                let normalized = ((F::one() + self.shape) * u + (F::one() - self.shape) * v)
                    / ((F::one() + self.shape * self.shape).sqrt()
                        * F::from(core::f64::consts::SQRT_2).unwrap());
                linear_map(normalized)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn test_samples<F: Float + fmt::Debug, D: Distribution<F>>(distr: D, zero: F, expected: &[F]) {
        let mut rng = crate::test::rng(213);
        let mut buf = [zero; 4];
        for x in &mut buf {
            *x = rng.sample(&distr);
        }
        assert_eq!(buf, expected);
    }

    #[test]
    #[should_panic]
    fn invalid_scale_nan() {
        SkewNormal::new(0.0, f64::NAN, 0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn invalid_scale_zero() {
        SkewNormal::new(0.0, 0.0, 0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn invalid_scale_negative() {
        SkewNormal::new(0.0, -1.0, 0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn invalid_scale_infinite() {
        SkewNormal::new(0.0, f64::INFINITY, 0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn invalid_shape_nan() {
        SkewNormal::new(0.0, 1.0, f64::NAN).unwrap();
    }

    #[test]
    #[should_panic]
    fn invalid_shape_infinite() {
        SkewNormal::new(0.0, 1.0, f64::INFINITY).unwrap();
    }

    #[test]
    fn valid_location_nan() {
        SkewNormal::new(f64::NAN, 1.0, 0.0).unwrap();
    }

    #[test]
    fn skew_normal_value_stability() {
        test_samples(
            SkewNormal::new(0.0, 1.0, 0.0).unwrap(),
            0f32,
            &[-0.11844189, 0.781378, 0.06563994, -1.1932899],
        );
        test_samples(
            SkewNormal::new(0.0, 1.0, 0.0).unwrap(),
            0f64,
            &[
                -0.11844188827977231,
                0.7813779637772346,
                0.06563993969580051,
                -1.1932899004186373,
            ],
        );
        test_samples(
            SkewNormal::new(f64::INFINITY, 1.0, 0.0).unwrap(),
            0f64,
            &[f64::INFINITY, f64::INFINITY, f64::INFINITY, f64::INFINITY],
        );
        test_samples(
            SkewNormal::new(f64::NEG_INFINITY, 1.0, 0.0).unwrap(),
            0f64,
            &[
                f64::NEG_INFINITY,
                f64::NEG_INFINITY,
                f64::NEG_INFINITY,
                f64::NEG_INFINITY,
            ],
        );
    }

    #[test]
    fn skew_normal_value_location_nan() {
        let skew_normal = SkewNormal::new(f64::NAN, 1.0, 0.0).unwrap();
        let mut rng = crate::test::rng(213);
        let mut buf = [0.0; 4];
        for x in &mut buf {
            *x = rng.sample(skew_normal);
        }
        for value in buf.iter() {
            assert!(value.is_nan());
        }
    }

    #[test]
    fn skew_normal_distributions_can_be_compared() {
        assert_eq!(
            SkewNormal::new(1.0, 2.0, 3.0),
            SkewNormal::new(1.0, 2.0, 3.0)
        );
    }
}