pub trait Rng: RngCore {
// Provided methods
fn random<T>(&mut self) -> T
where Standard: Distribution<T> { ... }
fn random_iter<T>(self) -> DistIter<Standard, Self, T> ⓘ
where Self: Sized,
Standard: Distribution<T> { ... }
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { ... }
fn sample_iter<T, D>(self, distr: D) -> DistIter<D, Self, T> ⓘ
where D: Distribution<T>,
Self: Sized { ... }
fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T) { ... }
fn gen_range<T, R>(&mut self, range: R) -> T
where T: SampleUniform,
R: SampleRange<T> { ... }
fn gen_bool(&mut self, p: f64) -> bool { ... }
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool { ... }
fn gen<T>(&mut self) -> T
where Standard: Distribution<T> { ... }
}
Expand description
User-level interface for RNGs
RngCore
is the dyn
-safe implementation-level interface for Random
(Number) Generators. This trait, Rng
, provides a user-level interface on
RNGs. It is implemented automatically for any R: RngCore
.
This trait must usually be brought into scope via use rand::Rng;
or
use rand::prelude::*;
.
§Generic usage
The basic pattern is fn foo<R: Rng + ?Sized>(rng: &mut R)
. Some
things are worth noting here:
- Since
Rng: RngCore
and everyRngCore
implementsRng
, it makes no difference whether we useR: Rng
orR: RngCore
. - The
+ ?Sized
un-bounding allows functions to be called directly on type-erased references; i.e.foo(r)
wherer: &mut dyn RngCore
. Without this it would be necessary to writefoo(&mut r)
.
An alternative pattern is possible: fn foo<R: Rng>(rng: R)
. This has some
trade-offs. It allows the argument to be consumed directly without a &mut
(which is how from_rng(rand::rng())
works); also it still works directly
on references (including type-erased references). Unfortunately within the
function foo
it is not known whether rng
is a reference type or not,
hence many uses of rng
require an extra reference, either explicitly
(distr.sample(&mut rng)
) or implicitly (rng.random()
); one may hope the
optimiser can remove redundant references later.
Example:
use rand::Rng;
fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
rng.random()
}
Provided Methods§
sourcefn random<T>(&mut self) -> Twhere
Standard: Distribution<T>,
fn random<T>(&mut self) -> Twhere
Standard: Distribution<T>,
Return a random value via the Standard
distribution.
§Example
use rand::Rng;
let mut rng = rand::rng();
let x: u32 = rng.random();
println!("{}", x);
println!("{:?}", rng.random::<(f64, bool)>());
§Arrays and tuples
The rng.random()
method is able to generate arrays
and tuples (up to 12 elements), so long as all element types can be
generated.
For arrays of integers, especially for those with small element types
(< 64 bit), it will likely be faster to instead use Rng::fill
,
though note that generated values will differ.
use rand::Rng;
let mut rng = rand::rng();
let tuple: (u8, i32, char) = rng.random(); // arbitrary tuple support
let arr1: [f32; 32] = rng.random(); // array construction
let mut arr2 = [0u8; 128];
rng.fill(&mut arr2); // array fill
sourcefn random_iter<T>(self) -> DistIter<Standard, Self, T> ⓘ
fn random_iter<T>(self) -> DistIter<Standard, Self, T> ⓘ
Return an iterator over random
variates
This is a just a wrapper over Rng::sample_iter
using
distr::Standard
.
Note: this method consumes its argument. Use
(&mut rng).random_iter()
to avoid consuming the RNG.
§Example
use rand::{rngs::mock::StepRng, Rng};
let rng = StepRng::new(1, 1);
let v: Vec<i32> = rng.random_iter().take(5).collect();
assert_eq!(&v, &[1, 2, 3, 4, 5]);
sourcefn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T
Sample a new value, using the given distribution.
§Example
use rand::Rng;
use rand::distr::Uniform;
let mut rng = rand::rng();
let x = rng.sample(Uniform::new(10u32, 15).unwrap());
// Type annotation requires two types, the type and distribution; the
// distribution can be inferred.
let y = rng.sample::<u16, _>(Uniform::new(10, 15).unwrap());
sourcefn sample_iter<T, D>(self, distr: D) -> DistIter<D, Self, T> ⓘwhere
D: Distribution<T>,
Self: Sized,
fn sample_iter<T, D>(self, distr: D) -> DistIter<D, Self, T> ⓘwhere
D: Distribution<T>,
Self: Sized,
Create an iterator that generates values using the given distribution.
Note: this method consumes its arguments. Use
(&mut rng).sample_iter(..)
to avoid consuming the RNG.
§Example
use rand::Rng;
use rand::distr::{Alphanumeric, Uniform, Standard};
let mut rng = rand::rng();
// Vec of 16 x f32:
let v: Vec<f32> = (&mut rng).sample_iter(Standard).take(16).collect();
// String:
let s: String = (&mut rng).sample_iter(Alphanumeric)
.take(7)
.map(char::from)
.collect();
// Combined values
println!("{:?}", (&mut rng).sample_iter(Standard).take(5)
.collect::<Vec<(f64, bool)>>());
// Dice-rolling:
let die_range = Uniform::new_inclusive(1, 6).unwrap();
let mut roll_die = (&mut rng).sample_iter(die_range);
while roll_die.next().unwrap() != 6 {
println!("Not a 6; rolling again!");
}
sourcefn fill<T: Fill + ?Sized>(&mut self, dest: &mut T)
fn fill<T: Fill + ?Sized>(&mut self, dest: &mut T)
Fill any type implementing Fill
with random data
This method is implemented for types which may be safely reinterpreted
as an (aligned) [u8]
slice then filled with random data. It is often
faster than using Rng::random
but not value-equivalent.
The distribution is expected to be uniform with portable results, but this cannot be guaranteed for third-party implementations.
§Example
use rand::Rng;
let mut arr = [0i8; 20];
rand::rng().fill(&mut arr[..]);
sourcefn gen_range<T, R>(&mut self, range: R) -> Twhere
T: SampleUniform,
R: SampleRange<T>,
fn gen_range<T, R>(&mut self, range: R) -> Twhere
T: SampleUniform,
R: SampleRange<T>,
Generate a random value in the given range.
This function is optimised for the case that only a single sample is
made from the given range. See also the Uniform
distribution
type which may be faster if sampling from the same range repeatedly.
All types support low..high_exclusive
and low..=high
range syntax.
Unsigned integer types also support ..high_exclusive
and ..=high
syntax.
§Panics
Panics if the range is empty, or if high - low
overflows for floats.
§Example
use rand::Rng;
let mut rng = rand::rng();
// Exclusive range
let n: u32 = rng.gen_range(..10);
println!("{}", n);
let m: f64 = rng.gen_range(-40.0..1.3e5);
println!("{}", m);
// Inclusive range
let n: u32 = rng.gen_range(..=10);
println!("{}", n);
sourcefn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool
Return a bool with a probability of numerator/denominator
of being
true. I.e. gen_ratio(2, 3)
has chance of 2 in 3, or about 67%, of
returning true. If numerator == denominator
, then the returned value
is guaranteed to be true
. If numerator == 0
, then the returned
value is guaranteed to be false
.
See also the Bernoulli
distribution, which may be faster if
sampling from the same numerator
and denominator
repeatedly.
§Panics
If denominator == 0
or numerator > denominator
.
§Example
use rand::Rng;
let mut rng = rand::rng();
println!("{}", rng.gen_ratio(2, 3));
sourcefn gen<T>(&mut self) -> Twhere
Standard: Distribution<T>,
👎Deprecated since 0.9.0: Renamed to random
to avoid conflict with the new gen
keyword in Rust 2024.
fn gen<T>(&mut self) -> Twhere
Standard: Distribution<T>,
random
to avoid conflict with the new gen
keyword in Rust 2024.Alias for Rng::random
.