rand_pcg/pcg128cm.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
// Copyright 2018-2021 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017, 2019 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! PCG random number generators
// This is the cheap multiplier used by PCG for 128-bit state.
const MULTIPLIER: u64 = 15750249268501108917;
use core::fmt;
use rand_core::{impls, le, RngCore, SeedableRng};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A PCG random number generator (CM DXSM 128/64 (LCG) variant).
///
/// Permuted Congruential Generator with 128-bit state, internal Linear
/// Congruential Generator, and 64-bit output via "double xorshift multiply"
/// output function.
///
/// This is a 128-bit LCG with explicitly chosen stream with the PCG-DXSM
/// output function. This corresponds to `pcg_engines::cm_setseq_dxsm_128_64`
/// from pcg_cpp and `PCG64DXSM` from NumPy.
///
/// Despite the name, this implementation uses 32 bytes (256 bit) space
/// comprising 128 bits of state and 128 bits stream selector. These are both
/// set by `SeedableRng`, using a 256-bit seed.
///
/// Note that while two generators with different stream parameter may be
/// closely correlated, this is [mitigated][upgrading-pcg64] by the DXSM output function.
///
/// [upgrading-pcg64]: https://numpy.org/doc/stable/reference/random/upgrading-pcg64.html
#[derive(Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Lcg128CmDxsm64 {
state: u128,
increment: u128,
}
/// [`Lcg128CmDxsm64`] is also known as `PCG64DXSM`.
pub type Pcg64Dxsm = Lcg128CmDxsm64;
impl Lcg128CmDxsm64 {
/// Multi-step advance functions (jump-ahead, jump-back)
///
/// The method used here is based on Brown, "Random Number Generation
/// with Arbitrary Stride,", Transactions of the American Nuclear
/// Society (Nov. 1994). The algorithm is very similar to fast
/// exponentiation.
///
/// Even though delta is an unsigned integer, we can pass a
/// signed integer to go backwards, it just goes "the long way round".
///
/// Using this function is equivalent to calling `next_64()` `delta`
/// number of times.
#[inline]
pub fn advance(&mut self, delta: u128) {
let mut acc_mult: u128 = 1;
let mut acc_plus: u128 = 0;
let mut cur_mult = MULTIPLIER as u128;
let mut cur_plus = self.increment;
let mut mdelta = delta;
while mdelta > 0 {
if (mdelta & 1) != 0 {
acc_mult = acc_mult.wrapping_mul(cur_mult);
acc_plus = acc_plus.wrapping_mul(cur_mult).wrapping_add(cur_plus);
}
cur_plus = cur_mult.wrapping_add(1).wrapping_mul(cur_plus);
cur_mult = cur_mult.wrapping_mul(cur_mult);
mdelta /= 2;
}
self.state = acc_mult.wrapping_mul(self.state).wrapping_add(acc_plus);
}
/// Construct an instance compatible with PCG seed and stream.
///
/// Note that the highest bit of the `stream` parameter is discarded
/// to simplify upholding internal invariants.
///
/// Note that while two generators with different stream parameter may be
/// closely correlated, this is [mitigated][upgrading-pcg64] by the DXSM output function.
///
/// PCG specifies the following default values for both parameters:
///
/// - `state = 0xcafef00dd15ea5e5`
/// - `stream = 0xa02bdbf7bb3c0a7ac28fa16a64abf96`
///
/// [upgrading-pcg64]: https://numpy.org/doc/stable/reference/random/upgrading-pcg64.html
pub fn new(state: u128, stream: u128) -> Self {
// The increment must be odd, hence we discard one bit:
let increment = (stream << 1) | 1;
Self::from_state_incr(state, increment)
}
#[inline]
fn from_state_incr(state: u128, increment: u128) -> Self {
let mut pcg = Self { state, increment };
// Move away from initial value:
pcg.state = pcg.state.wrapping_add(pcg.increment);
pcg.step();
pcg
}
#[inline(always)]
fn step(&mut self) {
// prepare the LCG for the next round
self.state = self
.state
.wrapping_mul(MULTIPLIER as u128)
.wrapping_add(self.increment);
}
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Lcg128CmDxsm64 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Lcg128CmDxsm64 {{}}")
}
}
impl SeedableRng for Lcg128CmDxsm64 {
type Seed = [u8; 32];
/// We use a single 255-bit seed to initialise the state and select a stream.
/// One `seed` bit (lowest bit of `seed[8]`) is ignored.
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u64 = [0u64; 4];
le::read_u64_into(&seed, &mut seed_u64);
let state = u128::from(seed_u64[0]) | (u128::from(seed_u64[1]) << 64);
let incr = u128::from(seed_u64[2]) | (u128::from(seed_u64[3]) << 64);
// The increment must be odd, hence we discard one bit:
Self::from_state_incr(state, incr | 1)
}
}
impl RngCore for Lcg128CmDxsm64 {
#[inline]
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
#[inline]
fn next_u64(&mut self) -> u64 {
let res = output_dxsm(self.state);
self.step();
res
}
#[inline]
fn fill_bytes(&mut self, dest: &mut [u8]) {
impls::fill_bytes_via_next(self, dest)
}
}
#[inline(always)]
fn output_dxsm(state: u128) -> u64 {
// See https://github.com/imneme/pcg-cpp/blob/ffd522e7188bef30a00c74dc7eb9de5faff90092/include/pcg_random.hpp#L1016
// for a short discussion of the construction and its original implementation.
let mut hi = (state >> 64) as u64;
let mut lo = state as u64;
lo |= 1;
hi ^= hi >> 32;
hi = hi.wrapping_mul(MULTIPLIER);
hi ^= hi >> 48;
hi = hi.wrapping_mul(lo);
hi
}