rand_distr/weighted_tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
// Copyright 2024 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains an implementation of a tree structure for sampling random
//! indices with probabilities proportional to a collection of weights.
use core::ops::SubAssign;
use super::WeightError;
use crate::Distribution;
use alloc::vec::Vec;
use rand::distr::uniform::{SampleBorrow, SampleUniform};
use rand::distr::Weight;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A distribution using weighted sampling to pick a discretely selected item.
///
/// Sampling a [`WeightedTreeIndex<W>`] distribution returns the index of a randomly
/// selected element from the vector used to create the [`WeightedTreeIndex<W>`].
/// The chance of a given element being picked is proportional to the value of
/// the element. The weights can have any type `W` for which an implementation of
/// [`Weight`] exists.
///
/// # Key differences
///
/// The main distinction between [`WeightedTreeIndex<W>`] and [`rand::distr::WeightedIndex<W>`]
/// lies in the internal representation of weights. In [`WeightedTreeIndex<W>`],
/// weights are structured as a tree, which is optimized for frequent updates of the weights.
///
/// # Caution: Floating point types
///
/// When utilizing [`WeightedTreeIndex<W>`] with floating point types (such as f32 or f64),
/// exercise caution due to the inherent nature of floating point arithmetic. Floating point types
/// are susceptible to numerical rounding errors. Since operations on floating point weights are
/// repeated numerous times, rounding errors can accumulate, potentially leading to noticeable
/// deviations from the expected behavior.
///
/// Ideally, use fixed point or integer types whenever possible.
///
/// # Performance
///
/// A [`WeightedTreeIndex<W>`] with `n` elements requires `O(n)` memory.
///
/// Time complexity for the operations of a [`WeightedTreeIndex<W>`] are:
/// * Constructing: Building the initial tree from an iterator of weights takes `O(n)` time.
/// * Sampling: Choosing an index (traversing down the tree) requires `O(log n)` time.
/// * Weight Update: Modifying a weight (traversing up the tree), requires `O(log n)` time.
/// * Weight Addition (Pushing): Adding a new weight (traversing up the tree), requires `O(log n)` time.
/// * Weight Removal (Popping): Removing a weight (traversing up the tree), requires `O(log n)` time.
///
/// # Example
///
/// ```
/// use rand_distr::WeightedTreeIndex;
/// use rand::prelude::*;
///
/// let choices = vec!['a', 'b', 'c'];
/// let weights = vec![2, 0];
/// let mut dist = WeightedTreeIndex::new(&weights).unwrap();
/// dist.push(1).unwrap();
/// dist.update(1, 1).unwrap();
/// let mut rng = rand::rng();
/// let mut samples = [0; 3];
/// for _ in 0..100 {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// let i = dist.sample(&mut rng);
/// samples[i] += 1;
/// }
/// println!("Results: {:?}", choices.iter().zip(samples.iter()).collect::<Vec<_>>());
/// ```
///
/// [`WeightedTreeIndex<W>`]: WeightedTreeIndex
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "W: Serialize, W::Sampler: Serialize"))
)]
#[cfg_attr(
feature = "serde",
serde(bound(deserialize = "W: Deserialize<'de>, W::Sampler: Deserialize<'de>"))
)]
#[derive(Clone, Default, Debug, PartialEq)]
pub struct WeightedTreeIndex<
W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight,
> {
subtotals: Vec<W>,
}
impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight>
WeightedTreeIndex<W>
{
/// Creates a new [`WeightedTreeIndex`] from a slice of weights.
///
/// Error cases:
/// - [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
/// - [`WeightError::Overflow`] when the sum of all weights overflows.
pub fn new<I>(weights: I) -> Result<Self, WeightError>
where
I: IntoIterator,
I::Item: SampleBorrow<W>,
{
let mut subtotals: Vec<W> = weights.into_iter().map(|x| x.borrow().clone()).collect();
for weight in subtotals.iter() {
if !(*weight >= W::ZERO) {
return Err(WeightError::InvalidWeight);
}
}
let n = subtotals.len();
for i in (1..n).rev() {
let w = subtotals[i].clone();
let parent = (i - 1) / 2;
subtotals[parent]
.checked_add_assign(&w)
.map_err(|()| WeightError::Overflow)?;
}
Ok(Self { subtotals })
}
/// Returns `true` if the tree contains no weights.
pub fn is_empty(&self) -> bool {
self.subtotals.is_empty()
}
/// Returns the number of weights.
pub fn len(&self) -> usize {
self.subtotals.len()
}
/// Returns `true` if we can sample.
///
/// This is the case if the total weight of the tree is greater than zero.
pub fn is_valid(&self) -> bool {
if let Some(weight) = self.subtotals.first() {
*weight > W::ZERO
} else {
false
}
}
/// Gets the weight at an index.
pub fn get(&self, index: usize) -> W {
let left_index = 2 * index + 1;
let right_index = 2 * index + 2;
let mut w = self.subtotals[index].clone();
w -= self.subtotal(left_index);
w -= self.subtotal(right_index);
w
}
/// Removes the last weight and returns it, or [`None`] if it is empty.
pub fn pop(&mut self) -> Option<W> {
self.subtotals.pop().map(|weight| {
let mut index = self.len();
while index != 0 {
index = (index - 1) / 2;
self.subtotals[index] -= weight.clone();
}
weight
})
}
/// Appends a new weight at the end.
///
/// Error cases:
/// - [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
/// - [`WeightError::Overflow`] when the sum of all weights overflows.
pub fn push(&mut self, weight: W) -> Result<(), WeightError> {
if !(weight >= W::ZERO) {
return Err(WeightError::InvalidWeight);
}
if let Some(total) = self.subtotals.first() {
let mut total = total.clone();
if total.checked_add_assign(&weight).is_err() {
return Err(WeightError::Overflow);
}
}
let mut index = self.len();
self.subtotals.push(weight.clone());
while index != 0 {
index = (index - 1) / 2;
self.subtotals[index].checked_add_assign(&weight).unwrap();
}
Ok(())
}
/// Updates the weight at an index.
///
/// Error cases:
/// - [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
/// - [`WeightError::Overflow`] when the sum of all weights overflows.
pub fn update(&mut self, mut index: usize, weight: W) -> Result<(), WeightError> {
if !(weight >= W::ZERO) {
return Err(WeightError::InvalidWeight);
}
let old_weight = self.get(index);
if weight > old_weight {
let mut difference = weight;
difference -= old_weight;
if let Some(total) = self.subtotals.first() {
let mut total = total.clone();
if total.checked_add_assign(&difference).is_err() {
return Err(WeightError::Overflow);
}
}
self.subtotals[index]
.checked_add_assign(&difference)
.unwrap();
while index != 0 {
index = (index - 1) / 2;
self.subtotals[index]
.checked_add_assign(&difference)
.unwrap();
}
} else if weight < old_weight {
let mut difference = old_weight;
difference -= weight;
self.subtotals[index] -= difference.clone();
while index != 0 {
index = (index - 1) / 2;
self.subtotals[index] -= difference.clone();
}
}
Ok(())
}
fn subtotal(&self, index: usize) -> W {
if index < self.subtotals.len() {
self.subtotals[index].clone()
} else {
W::ZERO
}
}
}
impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight>
WeightedTreeIndex<W>
{
/// Samples a randomly selected index from the weighted distribution.
///
/// Returns an error if there are no elements or all weights are zero. This
/// is unlike [`Distribution::sample`], which panics in those cases.
pub fn try_sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Result<usize, WeightError> {
let total_weight = self.subtotals.first().cloned().unwrap_or(W::ZERO);
if total_weight == W::ZERO {
return Err(WeightError::InsufficientNonZero);
}
let mut target_weight = rng.random_range(W::ZERO..total_weight);
let mut index = 0;
loop {
// Maybe descend into the left sub tree.
let left_index = 2 * index + 1;
let left_subtotal = self.subtotal(left_index);
if target_weight < left_subtotal {
index = left_index;
continue;
}
target_weight -= left_subtotal;
// Maybe descend into the right sub tree.
let right_index = 2 * index + 2;
let right_subtotal = self.subtotal(right_index);
if target_weight < right_subtotal {
index = right_index;
continue;
}
target_weight -= right_subtotal;
// Otherwise we found the index with the target weight.
break;
}
assert!(target_weight >= W::ZERO);
assert!(target_weight < self.get(index));
Ok(index)
}
}
/// Samples a randomly selected index from the weighted distribution.
///
/// Caution: This method panics if there are no elements or all weights are zero. However,
/// it is guaranteed that this method will not panic if a call to [`WeightedTreeIndex::is_valid`]
/// returns `true`.
impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight> Distribution<usize>
for WeightedTreeIndex<W>
{
#[track_caller]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
self.try_sample(rng).unwrap()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_no_item_error() {
let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
#[allow(clippy::needless_borrows_for_generic_args)]
let tree = WeightedTreeIndex::<f64>::new(&[]).unwrap();
assert_eq!(
tree.try_sample(&mut rng).unwrap_err(),
WeightError::InsufficientNonZero
);
}
#[test]
fn test_overflow_error() {
assert_eq!(
WeightedTreeIndex::new([i32::MAX, 2]),
Err(WeightError::Overflow)
);
let mut tree = WeightedTreeIndex::new([i32::MAX - 2, 1]).unwrap();
assert_eq!(tree.push(3), Err(WeightError::Overflow));
assert_eq!(tree.update(1, 4), Err(WeightError::Overflow));
tree.update(1, 2).unwrap();
}
#[test]
fn test_all_weights_zero_error() {
let tree = WeightedTreeIndex::<f64>::new([0.0, 0.0]).unwrap();
let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
assert_eq!(
tree.try_sample(&mut rng).unwrap_err(),
WeightError::InsufficientNonZero
);
}
#[test]
fn test_invalid_weight_error() {
assert_eq!(
WeightedTreeIndex::<i32>::new([1, -1]).unwrap_err(),
WeightError::InvalidWeight
);
#[allow(clippy::needless_borrows_for_generic_args)]
let mut tree = WeightedTreeIndex::<i32>::new(&[]).unwrap();
assert_eq!(tree.push(-1).unwrap_err(), WeightError::InvalidWeight);
tree.push(1).unwrap();
assert_eq!(tree.update(0, -1).unwrap_err(), WeightError::InvalidWeight);
}
#[test]
fn test_tree_modifications() {
let mut tree = WeightedTreeIndex::new([9, 1, 2]).unwrap();
tree.push(3).unwrap();
tree.push(5).unwrap();
tree.update(0, 0).unwrap();
assert_eq!(tree.pop(), Some(5));
let expected = WeightedTreeIndex::new([0, 1, 2, 3]).unwrap();
assert_eq!(tree, expected);
}
#[test]
#[allow(clippy::needless_range_loop)]
fn test_sample_counts_match_probabilities() {
let start = 1;
let end = 3;
let samples = 20;
let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
let weights: Vec<f64> = (0..end).map(|_| rng.random()).collect();
let mut tree = WeightedTreeIndex::new(weights).unwrap();
let mut total_weight = 0.0;
let mut weights = alloc::vec![0.0; end];
for i in 0..end {
tree.update(i, i as f64).unwrap();
weights[i] = i as f64;
total_weight += i as f64;
}
for i in 0..start {
tree.update(i, 0.0).unwrap();
weights[i] = 0.0;
total_weight -= i as f64;
}
let mut counts = alloc::vec![0_usize; end];
for _ in 0..samples {
let i = tree.sample(&mut rng);
counts[i] += 1;
}
for i in 0..start {
assert_eq!(counts[i], 0);
}
for i in start..end {
let diff = counts[i] as f64 / samples as f64 - weights[i] / total_weight;
assert!(diff.abs() < 0.05);
}
}
}