1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
// Copyright 2024 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module contains an implementation of a tree structure for sampling random
//! indices with probabilities proportional to a collection of weights.

use core::ops::SubAssign;

use super::WeightError;
use crate::Distribution;
use alloc::vec::Vec;
use rand::distr::uniform::{SampleBorrow, SampleUniform};
use rand::distr::Weight;
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// A distribution using weighted sampling to pick a discretely selected item.
///
/// Sampling a [`WeightedTreeIndex<W>`] distribution returns the index of a randomly
/// selected element from the vector used to create the [`WeightedTreeIndex<W>`].
/// The chance of a given element being picked is proportional to the value of
/// the element. The weights can have any type `W` for which an implementation of
/// [`Weight`] exists.
///
/// # Key differences
///
/// The main distinction between [`WeightedTreeIndex<W>`] and [`rand::distr::WeightedIndex<W>`]
/// lies in the internal representation of weights. In [`WeightedTreeIndex<W>`],
/// weights are structured as a tree, which is optimized for frequent updates of the weights.
///
/// # Caution: Floating point types
///
/// When utilizing [`WeightedTreeIndex<W>`] with floating point types (such as f32 or f64),
/// exercise caution due to the inherent nature of floating point arithmetic. Floating point types
/// are susceptible to numerical rounding errors. Since operations on floating point weights are
/// repeated numerous times, rounding errors can accumulate, potentially leading to noticeable
/// deviations from the expected behavior.
///
/// Ideally, use fixed point or integer types whenever possible.
///
/// # Performance
///
/// A [`WeightedTreeIndex<W>`] with `n` elements requires `O(n)` memory.
///
/// Time complexity for the operations of a [`WeightedTreeIndex<W>`] are:
/// * Constructing: Building the initial tree from an iterator of weights takes `O(n)` time.
/// * Sampling: Choosing an index (traversing down the tree) requires `O(log n)` time.
/// * Weight Update: Modifying a weight (traversing up the tree), requires `O(log n)` time.
/// * Weight Addition (Pushing): Adding a new weight (traversing up the tree), requires `O(log n)` time.
/// * Weight Removal (Popping): Removing a weight (traversing up the tree), requires `O(log n)` time.
///
/// # Example
///
/// ```
/// use rand_distr::WeightedTreeIndex;
/// use rand::prelude::*;
///
/// let choices = vec!['a', 'b', 'c'];
/// let weights = vec![2, 0];
/// let mut dist = WeightedTreeIndex::new(&weights).unwrap();
/// dist.push(1).unwrap();
/// dist.update(1, 1).unwrap();
/// let mut rng = thread_rng();
/// let mut samples = [0; 3];
/// for _ in 0..100 {
///     // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
///     let i = dist.sample(&mut rng);
///     samples[i] += 1;
/// }
/// println!("Results: {:?}", choices.iter().zip(samples.iter()).collect::<Vec<_>>());
/// ```
///
/// [`WeightedTreeIndex<W>`]: WeightedTreeIndex
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(bound(serialize = "W: Serialize, W::Sampler: Serialize"))
)]
#[cfg_attr(
    feature = "serde",
    serde(bound(deserialize = "W: Deserialize<'de>, W::Sampler: Deserialize<'de>"))
)]
#[derive(Clone, Default, Debug, PartialEq)]
pub struct WeightedTreeIndex<
    W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight,
> {
    subtotals: Vec<W>,
}

impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight>
    WeightedTreeIndex<W>
{
    /// Creates a new [`WeightedTreeIndex`] from a slice of weights.
    ///
    /// Error cases:
    /// -   [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
    /// -   [`WeightError::Overflow`] when the sum of all weights overflows.
    pub fn new<I>(weights: I) -> Result<Self, WeightError>
    where
        I: IntoIterator,
        I::Item: SampleBorrow<W>,
    {
        let mut subtotals: Vec<W> = weights.into_iter().map(|x| x.borrow().clone()).collect();
        for weight in subtotals.iter() {
            if !(*weight >= W::ZERO) {
                return Err(WeightError::InvalidWeight);
            }
        }
        let n = subtotals.len();
        for i in (1..n).rev() {
            let w = subtotals[i].clone();
            let parent = (i - 1) / 2;
            subtotals[parent]
                .checked_add_assign(&w)
                .map_err(|()| WeightError::Overflow)?;
        }
        Ok(Self { subtotals })
    }

    /// Returns `true` if the tree contains no weights.
    pub fn is_empty(&self) -> bool {
        self.subtotals.is_empty()
    }

    /// Returns the number of weights.
    pub fn len(&self) -> usize {
        self.subtotals.len()
    }

    /// Returns `true` if we can sample.
    ///
    /// This is the case if the total weight of the tree is greater than zero.
    pub fn is_valid(&self) -> bool {
        if let Some(weight) = self.subtotals.first() {
            *weight > W::ZERO
        } else {
            false
        }
    }

    /// Gets the weight at an index.
    pub fn get(&self, index: usize) -> W {
        let left_index = 2 * index + 1;
        let right_index = 2 * index + 2;
        let mut w = self.subtotals[index].clone();
        w -= self.subtotal(left_index);
        w -= self.subtotal(right_index);
        w
    }

    /// Removes the last weight and returns it, or [`None`] if it is empty.
    pub fn pop(&mut self) -> Option<W> {
        self.subtotals.pop().map(|weight| {
            let mut index = self.len();
            while index != 0 {
                index = (index - 1) / 2;
                self.subtotals[index] -= weight.clone();
            }
            weight
        })
    }

    /// Appends a new weight at the end.
    ///
    /// Error cases:
    /// -   [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
    /// -   [`WeightError::Overflow`] when the sum of all weights overflows.
    pub fn push(&mut self, weight: W) -> Result<(), WeightError> {
        if !(weight >= W::ZERO) {
            return Err(WeightError::InvalidWeight);
        }
        if let Some(total) = self.subtotals.first() {
            let mut total = total.clone();
            if total.checked_add_assign(&weight).is_err() {
                return Err(WeightError::Overflow);
            }
        }
        let mut index = self.len();
        self.subtotals.push(weight.clone());
        while index != 0 {
            index = (index - 1) / 2;
            self.subtotals[index].checked_add_assign(&weight).unwrap();
        }
        Ok(())
    }

    /// Updates the weight at an index.
    ///
    /// Error cases:
    /// -   [`WeightError::InvalidWeight`] when a weight is not-a-number or negative.
    /// -   [`WeightError::Overflow`] when the sum of all weights overflows.
    pub fn update(&mut self, mut index: usize, weight: W) -> Result<(), WeightError> {
        if !(weight >= W::ZERO) {
            return Err(WeightError::InvalidWeight);
        }
        let old_weight = self.get(index);
        if weight > old_weight {
            let mut difference = weight;
            difference -= old_weight;
            if let Some(total) = self.subtotals.first() {
                let mut total = total.clone();
                if total.checked_add_assign(&difference).is_err() {
                    return Err(WeightError::Overflow);
                }
            }
            self.subtotals[index]
                .checked_add_assign(&difference)
                .unwrap();
            while index != 0 {
                index = (index - 1) / 2;
                self.subtotals[index]
                    .checked_add_assign(&difference)
                    .unwrap();
            }
        } else if weight < old_weight {
            let mut difference = old_weight;
            difference -= weight;
            self.subtotals[index] -= difference.clone();
            while index != 0 {
                index = (index - 1) / 2;
                self.subtotals[index] -= difference.clone();
            }
        }
        Ok(())
    }

    fn subtotal(&self, index: usize) -> W {
        if index < self.subtotals.len() {
            self.subtotals[index].clone()
        } else {
            W::ZERO
        }
    }
}

impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight>
    WeightedTreeIndex<W>
{
    /// Samples a randomly selected index from the weighted distribution.
    ///
    /// Returns an error if there are no elements or all weights are zero. This
    /// is unlike [`Distribution::sample`], which panics in those cases.
    pub fn try_sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Result<usize, WeightError> {
        let total_weight = self.subtotals.first().cloned().unwrap_or(W::ZERO);
        if total_weight == W::ZERO {
            return Err(WeightError::InsufficientNonZero);
        }
        let mut target_weight = rng.gen_range(W::ZERO..total_weight);
        let mut index = 0;
        loop {
            // Maybe descend into the left sub tree.
            let left_index = 2 * index + 1;
            let left_subtotal = self.subtotal(left_index);
            if target_weight < left_subtotal {
                index = left_index;
                continue;
            }
            target_weight -= left_subtotal;

            // Maybe descend into the right sub tree.
            let right_index = 2 * index + 2;
            let right_subtotal = self.subtotal(right_index);
            if target_weight < right_subtotal {
                index = right_index;
                continue;
            }
            target_weight -= right_subtotal;

            // Otherwise we found the index with the target weight.
            break;
        }
        assert!(target_weight >= W::ZERO);
        assert!(target_weight < self.get(index));
        Ok(index)
    }
}

/// Samples a randomly selected index from the weighted distribution.
///
/// Caution: This method panics if there are no elements or all weights are zero. However,
/// it is guaranteed that this method will not panic if a call to [`WeightedTreeIndex::is_valid`]
/// returns `true`.
impl<W: Clone + PartialEq + PartialOrd + SampleUniform + SubAssign<W> + Weight> Distribution<usize>
    for WeightedTreeIndex<W>
{
    #[track_caller]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        self.try_sample(rng).unwrap()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_no_item_error() {
        let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
        #[allow(clippy::needless_borrows_for_generic_args)]
        let tree = WeightedTreeIndex::<f64>::new(&[]).unwrap();
        assert_eq!(
            tree.try_sample(&mut rng).unwrap_err(),
            WeightError::InsufficientNonZero
        );
    }

    #[test]
    fn test_overflow_error() {
        assert_eq!(
            WeightedTreeIndex::new([i32::MAX, 2]),
            Err(WeightError::Overflow)
        );
        let mut tree = WeightedTreeIndex::new([i32::MAX - 2, 1]).unwrap();
        assert_eq!(tree.push(3), Err(WeightError::Overflow));
        assert_eq!(tree.update(1, 4), Err(WeightError::Overflow));
        tree.update(1, 2).unwrap();
    }

    #[test]
    fn test_all_weights_zero_error() {
        let tree = WeightedTreeIndex::<f64>::new([0.0, 0.0]).unwrap();
        let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
        assert_eq!(
            tree.try_sample(&mut rng).unwrap_err(),
            WeightError::InsufficientNonZero
        );
    }

    #[test]
    fn test_invalid_weight_error() {
        assert_eq!(
            WeightedTreeIndex::<i32>::new([1, -1]).unwrap_err(),
            WeightError::InvalidWeight
        );
        #[allow(clippy::needless_borrows_for_generic_args)]
        let mut tree = WeightedTreeIndex::<i32>::new(&[]).unwrap();
        assert_eq!(tree.push(-1).unwrap_err(), WeightError::InvalidWeight);
        tree.push(1).unwrap();
        assert_eq!(tree.update(0, -1).unwrap_err(), WeightError::InvalidWeight);
    }

    #[test]
    fn test_tree_modifications() {
        let mut tree = WeightedTreeIndex::new([9, 1, 2]).unwrap();
        tree.push(3).unwrap();
        tree.push(5).unwrap();
        tree.update(0, 0).unwrap();
        assert_eq!(tree.pop(), Some(5));
        let expected = WeightedTreeIndex::new([0, 1, 2, 3]).unwrap();
        assert_eq!(tree, expected);
    }

    #[test]
    #[allow(clippy::needless_range_loop)]
    fn test_sample_counts_match_probabilities() {
        let start = 1;
        let end = 3;
        let samples = 20;
        let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
        let weights: Vec<f64> = (0..end).map(|_| rng.random()).collect();
        let mut tree = WeightedTreeIndex::new(weights).unwrap();
        let mut total_weight = 0.0;
        let mut weights = alloc::vec![0.0; end];
        for i in 0..end {
            tree.update(i, i as f64).unwrap();
            weights[i] = i as f64;
            total_weight += i as f64;
        }
        for i in 0..start {
            tree.update(i, 0.0).unwrap();
            weights[i] = 0.0;
            total_weight -= i as f64;
        }
        let mut counts = alloc::vec![0_usize; end];
        for _ in 0..samples {
            let i = tree.sample(&mut rng);
            counts[i] += 1;
        }
        for i in 0..start {
            assert_eq!(counts[i], 0);
        }
        for i in start..end {
            let diff = counts[i] as f64 / samples as f64 - weights[i] / total_weight;
            assert!(diff.abs() < 0.05);
        }
    }
}