1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
// Copyright 2019 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains an implementation of alias method for sampling random
//! indices with probabilities proportional to a collection of weights.
use super::WeightError;
use crate::{uniform::SampleUniform, Distribution, Uniform};
use alloc::{boxed::Box, vec, vec::Vec};
use core::fmt;
use core::iter::Sum;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};
use rand::Rng;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
/// A distribution using weighted sampling to pick a discretely selected item.
///
/// Sampling a [`WeightedAliasIndex<W>`] distribution returns the index of a randomly
/// selected element from the vector used to create the [`WeightedAliasIndex<W>`].
/// The chance of a given element being picked is proportional to the value of
/// the element. The weights can have any type `W` for which a implementation of
/// [`AliasableWeight`] exists.
///
/// # Performance
///
/// Given that `n` is the number of items in the vector used to create an
/// [`WeightedAliasIndex<W>`], it will require `O(n)` amount of memory.
/// More specifically it takes up some constant amount of memory plus
/// the vector used to create it and a [`Vec<u32>`] with capacity `n`.
///
/// Time complexity for the creation of a [`WeightedAliasIndex<W>`] is `O(n)`.
/// Sampling is `O(1)`, it makes a call to [`Uniform<u32>::sample`] and a call
/// to [`Uniform<W>::sample`].
///
/// # Example
///
/// ```
/// use rand_distr::WeightedAliasIndex;
/// use rand::prelude::*;
///
/// let choices = vec!['a', 'b', 'c'];
/// let weights = vec![2, 1, 1];
/// let dist = WeightedAliasIndex::new(weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedAliasIndex::new(items.iter().map(|item| item.1).collect()).unwrap();
/// for _ in 0..100 {
/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
/// println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`WeightedAliasIndex<W>`]: WeightedAliasIndex
/// [`Vec<u32>`]: Vec
/// [`Uniform<u32>::sample`]: Distribution::sample
/// [`Uniform<W>::sample`]: Distribution::sample
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde",
serde(bound(serialize = "W: Serialize, W::Sampler: Serialize"))
)]
#[cfg_attr(
feature = "serde",
serde(bound(deserialize = "W: Deserialize<'de>, W::Sampler: Deserialize<'de>"))
)]
pub struct WeightedAliasIndex<W: AliasableWeight> {
aliases: Box<[u32]>,
no_alias_odds: Box<[W]>,
uniform_index: Uniform<u32>,
uniform_within_weight_sum: Uniform<W>,
}
impl<W: AliasableWeight> WeightedAliasIndex<W> {
/// Creates a new [`WeightedAliasIndex`].
///
/// Error cases:
/// - [`WeightError::InvalidInput`] when `weights.len()` is zero or greater than `u32::MAX`.
/// - [`WeightError::InvalidWeight`] when a weight is not-a-number,
/// negative or greater than `max = W::MAX / weights.len()`.
/// - [`WeightError::InsufficientNonZero`] when the sum of all weights is zero.
pub fn new(weights: Vec<W>) -> Result<Self, WeightError> {
let n = weights.len();
if n == 0 || n > u32::MAX as usize {
return Err(WeightError::InvalidInput);
}
let n = n as u32;
let max_weight_size = W::try_from_u32_lossy(n)
.map(|n| W::MAX / n)
.unwrap_or(W::ZERO);
if !weights
.iter()
.all(|&w| W::ZERO <= w && w <= max_weight_size)
{
return Err(WeightError::InvalidWeight);
}
// The sum of weights will represent 100% of no alias odds.
let weight_sum = AliasableWeight::sum(weights.as_slice());
// Prevent floating point overflow due to rounding errors.
let weight_sum = if weight_sum > W::MAX {
W::MAX
} else {
weight_sum
};
if weight_sum == W::ZERO {
return Err(WeightError::InsufficientNonZero);
}
// `weight_sum` would have been zero if `try_from_lossy` causes an error here.
let n_converted = W::try_from_u32_lossy(n).unwrap();
let mut no_alias_odds = weights.into_boxed_slice();
for odds in no_alias_odds.iter_mut() {
*odds *= n_converted;
// Prevent floating point overflow due to rounding errors.
*odds = if *odds > W::MAX { W::MAX } else { *odds };
}
/// This struct is designed to contain three data structures at once,
/// sharing the same memory. More precisely it contains two linked lists
/// and an alias map, which will be the output of this method. To keep
/// the three data structures from getting in each other's way, it must
/// be ensured that a single index is only ever in one of them at the
/// same time.
struct Aliases {
aliases: Box<[u32]>,
smalls_head: u32,
bigs_head: u32,
}
impl Aliases {
fn new(size: u32) -> Self {
Aliases {
aliases: vec![0; size as usize].into_boxed_slice(),
smalls_head: u32::MAX,
bigs_head: u32::MAX,
}
}
fn push_small(&mut self, idx: u32) {
self.aliases[idx as usize] = self.smalls_head;
self.smalls_head = idx;
}
fn push_big(&mut self, idx: u32) {
self.aliases[idx as usize] = self.bigs_head;
self.bigs_head = idx;
}
fn pop_small(&mut self) -> u32 {
let popped = self.smalls_head;
self.smalls_head = self.aliases[popped as usize];
popped
}
fn pop_big(&mut self) -> u32 {
let popped = self.bigs_head;
self.bigs_head = self.aliases[popped as usize];
popped
}
fn smalls_is_empty(&self) -> bool {
self.smalls_head == u32::MAX
}
fn bigs_is_empty(&self) -> bool {
self.bigs_head == u32::MAX
}
fn set_alias(&mut self, idx: u32, alias: u32) {
self.aliases[idx as usize] = alias;
}
}
let mut aliases = Aliases::new(n);
// Split indices into those with small weights and those with big weights.
for (index, &odds) in no_alias_odds.iter().enumerate() {
if odds < weight_sum {
aliases.push_small(index as u32);
} else {
aliases.push_big(index as u32);
}
}
// Build the alias map by finding an alias with big weight for each index with
// small weight.
while !aliases.smalls_is_empty() && !aliases.bigs_is_empty() {
let s = aliases.pop_small();
let b = aliases.pop_big();
aliases.set_alias(s, b);
no_alias_odds[b as usize] =
no_alias_odds[b as usize] - weight_sum + no_alias_odds[s as usize];
if no_alias_odds[b as usize] < weight_sum {
aliases.push_small(b);
} else {
aliases.push_big(b);
}
}
// The remaining indices should have no alias odds of about 100%. This is due to
// numeric accuracy. Otherwise they would be exactly 100%.
while !aliases.smalls_is_empty() {
no_alias_odds[aliases.pop_small() as usize] = weight_sum;
}
while !aliases.bigs_is_empty() {
no_alias_odds[aliases.pop_big() as usize] = weight_sum;
}
// Prepare distributions for sampling. Creating them beforehand improves
// sampling performance.
let uniform_index = Uniform::new(0, n).unwrap();
let uniform_within_weight_sum = Uniform::new(W::ZERO, weight_sum).unwrap();
Ok(Self {
aliases: aliases.aliases,
no_alias_odds,
uniform_index,
uniform_within_weight_sum,
})
}
}
impl<W: AliasableWeight> Distribution<usize> for WeightedAliasIndex<W> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
let candidate = rng.sample(self.uniform_index);
if rng.sample(&self.uniform_within_weight_sum) < self.no_alias_odds[candidate as usize] {
candidate as usize
} else {
self.aliases[candidate as usize] as usize
}
}
}
impl<W: AliasableWeight> fmt::Debug for WeightedAliasIndex<W>
where
W: fmt::Debug,
Uniform<W>: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("WeightedAliasIndex")
.field("aliases", &self.aliases)
.field("no_alias_odds", &self.no_alias_odds)
.field("uniform_index", &self.uniform_index)
.field("uniform_within_weight_sum", &self.uniform_within_weight_sum)
.finish()
}
}
impl<W: AliasableWeight> Clone for WeightedAliasIndex<W>
where
Uniform<W>: Clone,
{
fn clone(&self) -> Self {
Self {
aliases: self.aliases.clone(),
no_alias_odds: self.no_alias_odds.clone(),
uniform_index: self.uniform_index,
uniform_within_weight_sum: self.uniform_within_weight_sum.clone(),
}
}
}
/// Trait that must be implemented for weights, that are used with
/// [`WeightedAliasIndex`]. Currently no guarantees on the correctness of
/// [`WeightedAliasIndex`] are given for custom implementations of this trait.
pub trait AliasableWeight:
Sized
+ Copy
+ SampleUniform
+ PartialOrd
+ Add<Output = Self>
+ AddAssign
+ Sub<Output = Self>
+ SubAssign
+ Mul<Output = Self>
+ MulAssign
+ Div<Output = Self>
+ DivAssign
+ Sum
{
/// Maximum number representable by `Self`.
const MAX: Self;
/// Element of `Self` equivalent to 0.
const ZERO: Self;
/// Produce an instance of `Self` from a `u32` value, or return `None` if
/// out of range. Loss of precision (where `Self` is a floating point type)
/// is acceptable.
fn try_from_u32_lossy(n: u32) -> Option<Self>;
/// Sums all values in slice `values`.
fn sum(values: &[Self]) -> Self {
values.iter().copied().sum()
}
}
macro_rules! impl_weight_for_float {
($T: ident) => {
impl AliasableWeight for $T {
const MAX: Self = $T::MAX;
const ZERO: Self = 0.0;
fn try_from_u32_lossy(n: u32) -> Option<Self> {
Some(n as $T)
}
fn sum(values: &[Self]) -> Self {
pairwise_sum(values)
}
}
};
}
/// In comparison to naive accumulation, the pairwise sum algorithm reduces
/// rounding errors when there are many floating point values.
fn pairwise_sum<T: AliasableWeight>(values: &[T]) -> T {
if values.len() <= 32 {
values.iter().copied().sum()
} else {
let mid = values.len() / 2;
let (a, b) = values.split_at(mid);
pairwise_sum(a) + pairwise_sum(b)
}
}
macro_rules! impl_weight_for_int {
($T: ident) => {
impl AliasableWeight for $T {
const MAX: Self = $T::MAX;
const ZERO: Self = 0;
fn try_from_u32_lossy(n: u32) -> Option<Self> {
let n_converted = n as Self;
if n_converted >= Self::ZERO && n_converted as u32 == n {
Some(n_converted)
} else {
None
}
}
}
};
}
impl_weight_for_float!(f64);
impl_weight_for_float!(f32);
impl_weight_for_int!(usize);
impl_weight_for_int!(u128);
impl_weight_for_int!(u64);
impl_weight_for_int!(u32);
impl_weight_for_int!(u16);
impl_weight_for_int!(u8);
impl_weight_for_int!(i128);
impl_weight_for_int!(i64);
impl_weight_for_int!(i32);
impl_weight_for_int!(i16);
impl_weight_for_int!(i8);
#[cfg(test)]
mod test {
use super::*;
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted_index_f32() {
test_weighted_index(f32::into);
// Floating point special cases
assert_eq!(
WeightedAliasIndex::new(vec![f32::INFINITY]).unwrap_err(),
WeightError::InvalidWeight
);
assert_eq!(
WeightedAliasIndex::new(vec![-0_f32]).unwrap_err(),
WeightError::InsufficientNonZero
);
assert_eq!(
WeightedAliasIndex::new(vec![-1_f32]).unwrap_err(),
WeightError::InvalidWeight
);
assert_eq!(
WeightedAliasIndex::new(vec![f32::NEG_INFINITY]).unwrap_err(),
WeightError::InvalidWeight
);
assert_eq!(
WeightedAliasIndex::new(vec![f32::NAN]).unwrap_err(),
WeightError::InvalidWeight
);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted_index_u128() {
test_weighted_index(|x: u128| x as f64);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted_index_i128() {
test_weighted_index(|x: i128| x as f64);
// Signed integer special cases
assert_eq!(
WeightedAliasIndex::new(vec![-1_i128]).unwrap_err(),
WeightError::InvalidWeight
);
assert_eq!(
WeightedAliasIndex::new(vec![i128::MIN]).unwrap_err(),
WeightError::InvalidWeight
);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted_index_u8() {
test_weighted_index(u8::into);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted_index_i8() {
test_weighted_index(i8::into);
// Signed integer special cases
assert_eq!(
WeightedAliasIndex::new(vec![-1_i8]).unwrap_err(),
WeightError::InvalidWeight
);
assert_eq!(
WeightedAliasIndex::new(vec![i8::MIN]).unwrap_err(),
WeightError::InvalidWeight
);
}
fn test_weighted_index<W: AliasableWeight, F: Fn(W) -> f64>(w_to_f64: F)
where
WeightedAliasIndex<W>: fmt::Debug,
{
const NUM_WEIGHTS: u32 = 10;
const ZERO_WEIGHT_INDEX: u32 = 3;
const NUM_SAMPLES: u32 = 15000;
let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
let weights = {
let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize);
let random_weight_distribution = Uniform::new_inclusive(
W::ZERO,
W::MAX / W::try_from_u32_lossy(NUM_WEIGHTS).unwrap(),
)
.unwrap();
for _ in 0..NUM_WEIGHTS {
weights.push(rng.sample(&random_weight_distribution));
}
weights[ZERO_WEIGHT_INDEX as usize] = W::ZERO;
weights
};
let weight_sum = weights.iter().copied().sum::<W>();
let expected_counts = weights
.iter()
.map(|&w| w_to_f64(w) / w_to_f64(weight_sum) * NUM_SAMPLES as f64)
.collect::<Vec<f64>>();
let weight_distribution = WeightedAliasIndex::new(weights).unwrap();
let mut counts = vec![0; NUM_WEIGHTS as usize];
for _ in 0..NUM_SAMPLES {
counts[rng.sample(&weight_distribution)] += 1;
}
assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0);
for (count, expected_count) in counts.into_iter().zip(expected_counts) {
let difference = (count as f64 - expected_count).abs();
let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1;
assert!(difference <= max_allowed_difference);
}
assert_eq!(
WeightedAliasIndex::<W>::new(vec![]).unwrap_err(),
WeightError::InvalidInput
);
assert_eq!(
WeightedAliasIndex::new(vec![W::ZERO]).unwrap_err(),
WeightError::InsufficientNonZero
);
assert_eq!(
WeightedAliasIndex::new(vec![W::MAX, W::MAX]).unwrap_err(),
WeightError::InvalidWeight
);
}
#[test]
fn value_stability() {
fn test_samples<W: AliasableWeight>(
weights: Vec<W>,
buf: &mut [usize],
expected: &[usize],
) {
assert_eq!(buf.len(), expected.len());
let distr = WeightedAliasIndex::new(weights).unwrap();
let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
for r in buf.iter_mut() {
*r = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
let mut buf = [0; 10];
test_samples(
vec![1i32, 1, 1, 1, 1, 1, 1, 1, 1],
&mut buf,
&[6, 5, 7, 5, 8, 7, 6, 2, 3, 7],
);
test_samples(
vec![0.7f32, 0.1, 0.1, 0.1],
&mut buf,
&[2, 0, 0, 0, 0, 0, 0, 0, 1, 3],
);
test_samples(
vec![1.0f64, 0.999, 0.998, 0.997],
&mut buf,
&[2, 1, 2, 3, 2, 1, 3, 2, 1, 1],
);
}
}