rand_core/lib.rs
1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017-2018 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! Random number generation traits
11//!
12//! This crate is mainly of interest to crates publishing implementations of
13//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14//! which re-exports the main traits and error types.
15//!
16//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17//! generators and external random-number sources.
18//!
19//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20//! other random number generators.
21//!
22//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
23//! implementation of [`RngCore`].
24//!
25//! [`rand`]: https://docs.rs/rand
26
27#![doc(
28 html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
29 html_favicon_url = "https://www.rust-lang.org/favicon.ico",
30 html_root_url = "https://rust-random.github.io/rand/"
31)]
32#![deny(missing_docs)]
33#![deny(missing_debug_implementations)]
34#![doc(test(attr(allow(unused_variables), deny(warnings))))]
35#![cfg_attr(docsrs, feature(doc_auto_cfg))]
36#![no_std]
37
38#[cfg(feature = "std")]
39extern crate std;
40
41use core::{fmt, ops::DerefMut};
42
43pub mod block;
44pub mod impls;
45pub mod le;
46#[cfg(feature = "os_rng")]
47mod os;
48
49#[cfg(feature = "os_rng")]
50pub use os::{OsError, OsRng};
51
52/// Implementation-level interface for RNGs
53///
54/// This trait encapsulates the low-level functionality common to all
55/// generators, and is the "back end", to be implemented by generators.
56/// End users should normally use the [`rand::Rng`] trait
57/// which is automatically implemented for every type implementing `RngCore`.
58///
59/// Three different methods for generating random data are provided since the
60/// optimal implementation of each is dependent on the type of generator. There
61/// is no required relationship between the output of each; e.g. many
62/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
63/// values and drop any remaining unused bytes. The same can happen with the
64/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
65/// random bits for efficiency.
66///
67/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
68/// returning the same value, or never setting certain bits) can break rejection
69/// sampling used by random distributions, and also break other RNGs when
70/// seeding them via [`SeedableRng::from_rng`].
71///
72/// Algorithmic generators implementing [`SeedableRng`] should normally have
73/// *portable, reproducible* output, i.e. fix Endianness when converting values
74/// to avoid platform differences, and avoid making any changes which affect
75/// output (except by communicating that the release has breaking changes).
76///
77/// Typically an RNG will implement only one of the methods available
78/// in this trait directly, then use the helper functions from the
79/// [`impls`] module to implement the other methods.
80///
81/// Note that implementors of [`RngCore`] also automatically implement
82/// the [`TryRngCore`] trait with the `Error` associated type being
83/// equal to [`Infallible`].
84///
85/// It is recommended that implementations also implement:
86///
87/// - `Debug` with a custom implementation which *does not* print any internal
88/// state (at least, [`CryptoRng`]s should not risk leaking state through
89/// `Debug`).
90/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
91/// support optional at the crate level in PRNG libs.
92/// - `Clone`, if possible.
93/// - *never* implement `Copy` (accidental copies may cause repeated values).
94/// - *do not* implement `Default` for pseudorandom generators, but instead
95/// implement [`SeedableRng`], to guide users towards proper seeding.
96/// External / hardware RNGs can choose to implement `Default`.
97/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
98///
99/// # Example
100///
101/// A simple example, obviously not generating very *random* output:
102///
103/// ```
104/// #![allow(dead_code)]
105/// use rand_core::{RngCore, impls};
106///
107/// struct CountingRng(u64);
108///
109/// impl RngCore for CountingRng {
110/// fn next_u32(&mut self) -> u32 {
111/// self.next_u64() as u32
112/// }
113///
114/// fn next_u64(&mut self) -> u64 {
115/// self.0 += 1;
116/// self.0
117/// }
118///
119/// fn fill_bytes(&mut self, dst: &mut [u8]) {
120/// impls::fill_bytes_via_next(self, dst)
121/// }
122/// }
123/// ```
124///
125/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
126/// [`fill_bytes`]: RngCore::fill_bytes
127/// [`next_u32`]: RngCore::next_u32
128/// [`next_u64`]: RngCore::next_u64
129/// [`Infallible`]: core::convert::Infallible
130pub trait RngCore {
131 /// Return the next random `u32`.
132 ///
133 /// RNGs must implement at least one method from this trait directly. In
134 /// the case this method is not implemented directly, it can be implemented
135 /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
136 fn next_u32(&mut self) -> u32;
137
138 /// Return the next random `u64`.
139 ///
140 /// RNGs must implement at least one method from this trait directly. In
141 /// the case this method is not implemented directly, it can be implemented
142 /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
143 fn next_u64(&mut self) -> u64;
144
145 /// Fill `dest` with random data.
146 ///
147 /// RNGs must implement at least one method from this trait directly. In
148 /// the case this method is not implemented directly, it can be implemented
149 /// via [`impls::fill_bytes_via_next`].
150 ///
151 /// This method should guarantee that `dest` is entirely filled
152 /// with new data, and may panic if this is impossible
153 /// (e.g. reading past the end of a file that is being used as the
154 /// source of randomness).
155 fn fill_bytes(&mut self, dst: &mut [u8]);
156}
157
158impl<T: DerefMut> RngCore for T
159where
160 T::Target: RngCore,
161{
162 #[inline]
163 fn next_u32(&mut self) -> u32 {
164 self.deref_mut().next_u32()
165 }
166
167 #[inline]
168 fn next_u64(&mut self) -> u64 {
169 self.deref_mut().next_u64()
170 }
171
172 #[inline]
173 fn fill_bytes(&mut self, dst: &mut [u8]) {
174 self.deref_mut().fill_bytes(dst);
175 }
176}
177
178/// A marker trait over [`RngCore`] for securely unpredictable RNGs
179///
180/// This marker trait indicates that the implementing generator is intended,
181/// when correctly seeded and protected from side-channel attacks such as a
182/// leaking of state, to be a cryptographically secure generator. This trait is
183/// provided as a tool to aid review of cryptographic code, but does not by
184/// itself guarantee suitability for cryptographic applications.
185///
186/// Implementors of `CryptoRng` automatically implement the [`TryCryptoRng`]
187/// trait.
188///
189/// Implementors of `CryptoRng` should only implement [`Default`] if the
190/// `default()` instances are themselves secure generators: for example if the
191/// implementing type is a stateless interface over a secure external generator
192/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
193///
194/// Formally, a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator)
195/// should satisfy an additional property over other generators: assuming that
196/// the generator has been appropriately seeded and has unknown state, then
197/// given the first *k* bits of an algorithm's output
198/// sequence, it should not be possible using polynomial-time algorithms to
199/// predict the next bit with probability significantly greater than 50%.
200///
201/// An optional property of CSPRNGs is backtracking resistance: if the CSPRNG's
202/// state is revealed, it will not be computationally-feasible to reconstruct
203/// prior output values. This property is not required by `CryptoRng`.
204pub trait CryptoRng: RngCore {}
205
206impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}
207
208/// A potentially fallible variant of [`RngCore`]
209///
210/// This trait is a generalization of [`RngCore`] to support potentially-
211/// fallible IO-based generators such as [`OsRng`].
212///
213/// All implementations of [`RngCore`] automatically support this `TryRngCore`
214/// trait, using [`Infallible`][core::convert::Infallible] as the associated
215/// `Error` type.
216///
217/// An implementation of this trait may be made compatible with code requiring
218/// an [`RngCore`] through [`TryRngCore::unwrap_err`]. The resulting RNG will
219/// panic in case the underlying fallible RNG yields an error.
220pub trait TryRngCore {
221 /// The type returned in the event of a RNG error.
222 type Error: fmt::Debug + fmt::Display;
223
224 /// Return the next random `u32`.
225 fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
226 /// Return the next random `u64`.
227 fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
228 /// Fill `dest` entirely with random data.
229 fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;
230
231 /// Wrap RNG with the [`UnwrapErr`] wrapper.
232 fn unwrap_err(self) -> UnwrapErr<Self>
233 where
234 Self: Sized,
235 {
236 UnwrapErr(self)
237 }
238
239 /// Wrap RNG with the [`UnwrapMut`] wrapper.
240 fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self> {
241 UnwrapMut(self)
242 }
243
244 /// Convert an [`RngCore`] to a [`RngReadAdapter`].
245 #[cfg(feature = "std")]
246 fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
247 where
248 Self: Sized,
249 {
250 RngReadAdapter { inner: self }
251 }
252}
253
254// Note that, unfortunately, this blanket impl prevents us from implementing
255// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
256// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
257impl<R: RngCore + ?Sized> TryRngCore for R {
258 type Error = core::convert::Infallible;
259
260 #[inline]
261 fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
262 Ok(self.next_u32())
263 }
264
265 #[inline]
266 fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
267 Ok(self.next_u64())
268 }
269
270 #[inline]
271 fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
272 self.fill_bytes(dst);
273 Ok(())
274 }
275}
276
277/// A marker trait over [`TryRngCore`] for securely unpredictable RNGs
278///
279/// This trait is like [`CryptoRng`] but for the trait [`TryRngCore`].
280///
281/// This marker trait indicates that the implementing generator is intended,
282/// when correctly seeded and protected from side-channel attacks such as a
283/// leaking of state, to be a cryptographically secure generator. This trait is
284/// provided as a tool to aid review of cryptographic code, but does not by
285/// itself guarantee suitability for cryptographic applications.
286///
287/// Implementors of `TryCryptoRng` should only implement [`Default`] if the
288/// `default()` instances are themselves secure generators: for example if the
289/// implementing type is a stateless interface over a secure external generator
290/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
291pub trait TryCryptoRng: TryRngCore {}
292
293impl<R: CryptoRng + ?Sized> TryCryptoRng for R {}
294
295/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
296/// by panicking on potential errors.
297#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
298pub struct UnwrapErr<R: TryRngCore>(pub R);
299
300impl<R: TryRngCore> RngCore for UnwrapErr<R> {
301 #[inline]
302 fn next_u32(&mut self) -> u32 {
303 self.0.try_next_u32().unwrap()
304 }
305
306 #[inline]
307 fn next_u64(&mut self) -> u64 {
308 self.0.try_next_u64().unwrap()
309 }
310
311 #[inline]
312 fn fill_bytes(&mut self, dst: &mut [u8]) {
313 self.0.try_fill_bytes(dst).unwrap()
314 }
315}
316
317impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}
318
319/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
320/// by panicking on potential errors.
321#[derive(Debug, Eq, PartialEq, Hash)]
322pub struct UnwrapMut<'r, R: TryRngCore + ?Sized>(pub &'r mut R);
323
324impl<'r, R: TryRngCore + ?Sized> UnwrapMut<'r, R> {
325 /// Reborrow with a new lifetime
326 ///
327 /// Rust allows references like `&T` or `&mut T` to be "reborrowed" through
328 /// coercion: essentially, the pointer is copied under a new, shorter, lifetime.
329 /// Until rfcs#1403 lands, reborrows on user types require a method call.
330 #[inline(always)]
331 pub fn re<'b>(&'b mut self) -> UnwrapMut<'b, R>
332 where
333 'r: 'b,
334 {
335 UnwrapMut(self.0)
336 }
337}
338
339impl<R: TryRngCore + ?Sized> RngCore for UnwrapMut<'_, R> {
340 #[inline]
341 fn next_u32(&mut self) -> u32 {
342 self.0.try_next_u32().unwrap()
343 }
344
345 #[inline]
346 fn next_u64(&mut self) -> u64 {
347 self.0.try_next_u64().unwrap()
348 }
349
350 #[inline]
351 fn fill_bytes(&mut self, dst: &mut [u8]) {
352 self.0.try_fill_bytes(dst).unwrap()
353 }
354}
355
356impl<R: TryCryptoRng + ?Sized> CryptoRng for UnwrapMut<'_, R> {}
357
358/// A random number generator that can be explicitly seeded.
359///
360/// This trait encapsulates the low-level functionality common to all
361/// pseudo-random number generators (PRNGs, or algorithmic generators).
362///
363/// A generator implementing `SeedableRng` will usually be deterministic, but
364/// beware that portability and reproducibility of results **is not implied**.
365/// Refer to documentation of the generator, noting that generators named after
366/// a specific algorithm are usually tested for reproducibility against a
367/// reference vector, while `SmallRng` and `StdRng` specifically opt out of
368/// reproducibility guarantees.
369///
370/// [`rand`]: https://docs.rs/rand
371pub trait SeedableRng: Sized {
372 /// Seed type, which is restricted to types mutably-dereferenceable as `u8`
373 /// arrays (we recommend `[u8; N]` for some `N`).
374 ///
375 /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
376 /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
377 /// partially overlapping periods.
378 ///
379 /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
380 ///
381 ///
382 /// # Implementing `SeedableRng` for RNGs with large seeds
383 ///
384 /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
385 /// `N` > 32. To be able to implement the traits required by `SeedableRng`
386 /// for RNGs with such large seeds, the newtype pattern can be used:
387 ///
388 /// ```
389 /// use rand_core::SeedableRng;
390 ///
391 /// const N: usize = 64;
392 /// #[derive(Clone)]
393 /// pub struct MyRngSeed(pub [u8; N]);
394 /// # #[allow(dead_code)]
395 /// pub struct MyRng(MyRngSeed);
396 ///
397 /// impl Default for MyRngSeed {
398 /// fn default() -> MyRngSeed {
399 /// MyRngSeed([0; N])
400 /// }
401 /// }
402 ///
403 /// impl AsRef<[u8]> for MyRngSeed {
404 /// fn as_ref(&self) -> &[u8] {
405 /// &self.0
406 /// }
407 /// }
408 ///
409 /// impl AsMut<[u8]> for MyRngSeed {
410 /// fn as_mut(&mut self) -> &mut [u8] {
411 /// &mut self.0
412 /// }
413 /// }
414 ///
415 /// impl SeedableRng for MyRng {
416 /// type Seed = MyRngSeed;
417 ///
418 /// fn from_seed(seed: MyRngSeed) -> MyRng {
419 /// MyRng(seed)
420 /// }
421 /// }
422 /// ```
423 type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;
424
425 /// Create a new PRNG using the given seed.
426 ///
427 /// PRNG implementations are allowed to assume that bits in the seed are
428 /// well distributed. That means usually that the number of one and zero
429 /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
430 /// Note that many non-cryptographic PRNGs will show poor quality output
431 /// if this is not adhered to. If you wish to seed from simple numbers, use
432 /// `seed_from_u64` instead.
433 ///
434 /// All PRNG implementations should be reproducible unless otherwise noted:
435 /// given a fixed `seed`, the same sequence of output should be produced
436 /// on all runs, library versions and architectures (e.g. check endianness).
437 /// Any "value-breaking" changes to the generator should require bumping at
438 /// least the minor version and documentation of the change.
439 ///
440 /// It is not required that this function yield the same state as a
441 /// reference implementation of the PRNG given equivalent seed; if necessary
442 /// another constructor replicating behaviour from a reference
443 /// implementation can be added.
444 ///
445 /// PRNG implementations should make sure `from_seed` never panics. In the
446 /// case that some special values (like an all zero seed) are not viable
447 /// seeds it is preferable to map these to alternative constant value(s),
448 /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
449 /// seed"). This is assuming only a small number of values must be rejected.
450 fn from_seed(seed: Self::Seed) -> Self;
451
452 /// Create a new PRNG using a `u64` seed.
453 ///
454 /// This is a convenience-wrapper around `from_seed` to allow construction
455 /// of any `SeedableRng` from a simple `u64` value. It is designed such that
456 /// low Hamming Weight numbers like 0 and 1 can be used and should still
457 /// result in good, independent seeds to the PRNG which is returned.
458 ///
459 /// This **is not suitable for cryptography**, as should be clear given that
460 /// the input size is only 64 bits.
461 ///
462 /// Implementations for PRNGs *may* provide their own implementations of
463 /// this function, but the default implementation should be good enough for
464 /// all purposes. *Changing* the implementation of this function should be
465 /// considered a value-breaking change.
466 fn seed_from_u64(mut state: u64) -> Self {
467 // We use PCG32 to generate a u32 sequence, and copy to the seed
468 fn pcg32(state: &mut u64) -> [u8; 4] {
469 const MUL: u64 = 6364136223846793005;
470 const INC: u64 = 11634580027462260723;
471
472 // We advance the state first (to get away from the input value,
473 // in case it has low Hamming Weight).
474 *state = state.wrapping_mul(MUL).wrapping_add(INC);
475 let state = *state;
476
477 // Use PCG output function with to_le to generate x:
478 let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
479 let rot = (state >> 59) as u32;
480 let x = xorshifted.rotate_right(rot);
481 x.to_le_bytes()
482 }
483
484 let mut seed = Self::Seed::default();
485 let mut iter = seed.as_mut().chunks_exact_mut(4);
486 for chunk in &mut iter {
487 chunk.copy_from_slice(&pcg32(&mut state));
488 }
489 let rem = iter.into_remainder();
490 if !rem.is_empty() {
491 rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
492 }
493
494 Self::from_seed(seed)
495 }
496
497 /// Create a new PRNG seeded from an infallible `Rng`.
498 ///
499 /// This may be useful when needing to rapidly seed many PRNGs from a master
500 /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
501 ///
502 /// The master PRNG should be at least as high quality as the child PRNGs.
503 /// When seeding non-cryptographic child PRNGs, we recommend using a
504 /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
505 /// correlations between the child PRNGs. If this is not possible (e.g.
506 /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
507 /// mixing function on the output or consider use of a hash function with
508 /// `from_seed`.
509 ///
510 /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
511 /// extreme example of what can go wrong: the new PRNG will be a clone
512 /// of the parent.
513 ///
514 /// PRNG implementations are allowed to assume that a good RNG is provided
515 /// for seeding, and that it is cryptographically secure when appropriate.
516 /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
517 /// method should ensure the implementation satisfies reproducibility
518 /// (in prior versions this was not required).
519 ///
520 /// [`rand`]: https://docs.rs/rand
521 fn from_rng(rng: &mut impl RngCore) -> Self {
522 let mut seed = Self::Seed::default();
523 rng.fill_bytes(seed.as_mut());
524 Self::from_seed(seed)
525 }
526
527 /// Create a new PRNG seeded from a potentially fallible `Rng`.
528 ///
529 /// See [`from_rng`][SeedableRng::from_rng] docs for more information.
530 fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> {
531 let mut seed = Self::Seed::default();
532 rng.try_fill_bytes(seed.as_mut())?;
533 Ok(Self::from_seed(seed))
534 }
535
536 /// Creates a new instance of the RNG seeded via [`getrandom`].
537 ///
538 /// This method is the recommended way to construct non-deterministic PRNGs
539 /// since it is convenient and secure.
540 ///
541 /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
542 /// If it's not desirable, use the [`try_from_os_rng`] method instead.
543 ///
544 /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
545 /// issue, one may prefer to seed from a local PRNG, e.g.
546 /// `from_rng(rand::rng()).unwrap()`.
547 ///
548 /// # Panics
549 ///
550 /// If [`getrandom`] is unable to provide secure entropy this method will panic.
551 ///
552 /// [`getrandom`]: https://docs.rs/getrandom
553 /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
554 #[cfg(feature = "os_rng")]
555 fn from_os_rng() -> Self {
556 match Self::try_from_os_rng() {
557 Ok(res) => res,
558 Err(err) => panic!("from_os_rng failed: {}", err),
559 }
560 }
561
562 /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
563 /// potential [`getrandom`] errors.
564 ///
565 /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
566 /// issue, one may prefer to seed from a local PRNG, e.g.
567 /// `from_rng(&mut rand::rng()).unwrap()`.
568 ///
569 /// [`getrandom`]: https://docs.rs/getrandom
570 #[cfg(feature = "os_rng")]
571 fn try_from_os_rng() -> Result<Self, getrandom::Error> {
572 let mut seed = Self::Seed::default();
573 getrandom::fill(seed.as_mut())?;
574 let res = Self::from_seed(seed);
575 Ok(res)
576 }
577}
578
579/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
580///
581/// # Examples
582///
583/// ```no_run
584/// # use std::{io, io::Read};
585/// # use std::fs::File;
586/// # use rand_core::{OsRng, TryRngCore};
587///
588/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
589/// ```
590#[cfg(feature = "std")]
591pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
592 inner: &'a mut R,
593}
594
595#[cfg(feature = "std")]
596impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
597 #[inline]
598 fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
599 self.inner.try_fill_bytes(buf).map_err(|err| {
600 std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}"))
601 })?;
602 Ok(buf.len())
603 }
604}
605
606#[cfg(feature = "std")]
607impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
608 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
609 f.debug_struct("ReadAdapter").finish()
610 }
611}
612
613#[cfg(test)]
614mod test {
615 use super::*;
616
617 #[test]
618 fn test_seed_from_u64() {
619 struct SeedableNum(u64);
620 impl SeedableRng for SeedableNum {
621 type Seed = [u8; 8];
622
623 fn from_seed(seed: Self::Seed) -> Self {
624 let mut x = [0u64; 1];
625 le::read_u64_into(&seed, &mut x);
626 SeedableNum(x[0])
627 }
628 }
629
630 const N: usize = 8;
631 const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
632 let mut results = [0u64; N];
633 for (i, seed) in SEEDS.iter().enumerate() {
634 let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
635 results[i] = x;
636 }
637
638 for (i1, r1) in results.iter().enumerate() {
639 let weight = r1.count_ones();
640 // This is the binomial distribution B(64, 0.5), so chance of
641 // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
642 // weight > 44.
643 assert!((20..=44).contains(&weight));
644
645 for (i2, r2) in results.iter().enumerate() {
646 if i1 == i2 {
647 continue;
648 }
649 let diff_weight = (r1 ^ r2).count_ones();
650 assert!(diff_weight >= 20);
651 }
652 }
653
654 // value-breakage test:
655 assert_eq!(results[0], 5029875928683246316);
656 }
657
658 // A stub RNG.
659 struct SomeRng;
660
661 impl RngCore for SomeRng {
662 fn next_u32(&mut self) -> u32 {
663 unimplemented!()
664 }
665 fn next_u64(&mut self) -> u64 {
666 unimplemented!()
667 }
668 fn fill_bytes(&mut self, _: &mut [u8]) {
669 unimplemented!()
670 }
671 }
672
673 impl CryptoRng for SomeRng {}
674
675 #[test]
676 fn dyn_rngcore_to_tryrngcore() {
677 // Illustrates the need for `+ ?Sized` bound in `impl<R: RngCore> TryRngCore for R`.
678
679 // A method in another crate taking a fallible RNG
680 fn third_party_api(_rng: &mut (impl TryRngCore + ?Sized)) -> bool {
681 true
682 }
683
684 // A method in our crate requiring an infallible RNG
685 fn my_api(rng: &mut dyn RngCore) -> bool {
686 // We want to call the method above
687 third_party_api(rng)
688 }
689
690 assert!(my_api(&mut SomeRng));
691 }
692
693 #[test]
694 fn dyn_cryptorng_to_trycryptorng() {
695 // Illustrates the need for `+ ?Sized` bound in `impl<R: CryptoRng> TryCryptoRng for R`.
696
697 // A method in another crate taking a fallible RNG
698 fn third_party_api(_rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
699 true
700 }
701
702 // A method in our crate requiring an infallible RNG
703 fn my_api(rng: &mut dyn CryptoRng) -> bool {
704 // We want to call the method above
705 third_party_api(rng)
706 }
707
708 assert!(my_api(&mut SomeRng));
709 }
710
711 #[test]
712 fn dyn_unwrap_mut_tryrngcore() {
713 // Illustrates the need for `+ ?Sized` bound in
714 // `impl<R: TryRngCore> RngCore for UnwrapMut<'_, R>`.
715
716 fn third_party_api(_rng: &mut impl RngCore) -> bool {
717 true
718 }
719
720 fn my_api(rng: &mut (impl TryRngCore + ?Sized)) -> bool {
721 let mut infallible_rng = rng.unwrap_mut();
722 third_party_api(&mut infallible_rng)
723 }
724
725 assert!(my_api(&mut SomeRng));
726 }
727
728 #[test]
729 fn dyn_unwrap_mut_trycryptorng() {
730 // Illustrates the need for `+ ?Sized` bound in
731 // `impl<R: TryCryptoRng> CryptoRng for UnwrapMut<'_, R>`.
732
733 fn third_party_api(_rng: &mut impl CryptoRng) -> bool {
734 true
735 }
736
737 fn my_api(rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
738 let mut infallible_rng = rng.unwrap_mut();
739 third_party_api(&mut infallible_rng)
740 }
741
742 assert!(my_api(&mut SomeRng));
743 }
744
745 #[test]
746 fn reborrow_unwrap_mut() {
747 struct FourRng;
748
749 impl TryRngCore for FourRng {
750 type Error = core::convert::Infallible;
751 fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
752 Ok(4)
753 }
754 fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
755 unimplemented!()
756 }
757 fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), Self::Error> {
758 unimplemented!()
759 }
760 }
761
762 let mut rng = FourRng;
763 let mut rng = rng.unwrap_mut();
764
765 assert_eq!(rng.next_u32(), 4);
766 let mut rng2 = rng.re();
767 assert_eq!(rng2.next_u32(), 4);
768 drop(rng2);
769 assert_eq!(rng.next_u32(), 4);
770 }
771}