rand_core/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright 2018 Developers of the Rand project.
// Copyright 2017-2018 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Random number generation traits
//!
//! This crate is mainly of interest to crates publishing implementations of
//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
//! which re-exports the main traits and error types.
//!
//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
//! generators and external random-number sources.
//!
//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
//! other random number generators.
//!
//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
//! implementation of [`RngCore`].
//!
//! [`rand`]: https://docs.rs/rand
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![no_std]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
use core::{fmt, ops::DerefMut};
pub mod block;
pub mod impls;
pub mod le;
#[cfg(feature = "getrandom")]
mod os;
#[cfg(feature = "getrandom")]
pub use getrandom;
#[cfg(feature = "getrandom")]
pub use os::OsRng;
/// Implementation-level interface for RNGs
///
/// This trait encapsulates the low-level functionality common to all
/// generators, and is the "back end", to be implemented by generators.
/// End users should normally use the [`rand::Rng`] trait
/// which is automatically implemented for every type implementing `RngCore`.
///
/// Three different methods for generating random data are provided since the
/// optimal implementation of each is dependent on the type of generator. There
/// is no required relationship between the output of each; e.g. many
/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
/// values and drop any remaining unused bytes. The same can happen with the
/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
/// random bits for efficiency.
///
/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
/// returning the same value, or never setting certain bits) can break rejection
/// sampling used by random distributions, and also break other RNGs when
/// seeding them via [`SeedableRng::from_rng`].
///
/// Algorithmic generators implementing [`SeedableRng`] should normally have
/// *portable, reproducible* output, i.e. fix Endianness when converting values
/// to avoid platform differences, and avoid making any changes which affect
/// output (except by communicating that the release has breaking changes).
///
/// Typically an RNG will implement only one of the methods available
/// in this trait directly, then use the helper functions from the
/// [`impls`] module to implement the other methods.
///
/// Note that implementors of [`RngCore`] also automatically implement
/// the [`TryRngCore`] trait with the `Error` associated type being
/// equal to [`Infallible`].
///
/// It is recommended that implementations also implement:
///
/// - `Debug` with a custom implementation which *does not* print any internal
/// state (at least, [`CryptoRng`]s should not risk leaking state through
/// `Debug`).
/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
/// support optional at the crate level in PRNG libs.
/// - `Clone`, if possible.
/// - *never* implement `Copy` (accidental copies may cause repeated values).
/// - *do not* implement `Default` for pseudorandom generators, but instead
/// implement [`SeedableRng`], to guide users towards proper seeding.
/// External / hardware RNGs can choose to implement `Default`.
/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
///
/// # Example
///
/// A simple example, obviously not generating very *random* output:
///
/// ```
/// #![allow(dead_code)]
/// use rand_core::{RngCore, impls};
///
/// struct CountingRng(u64);
///
/// impl RngCore for CountingRng {
/// fn next_u32(&mut self) -> u32 {
/// self.next_u64() as u32
/// }
///
/// fn next_u64(&mut self) -> u64 {
/// self.0 += 1;
/// self.0
/// }
///
/// fn fill_bytes(&mut self, dst: &mut [u8]) {
/// impls::fill_bytes_via_next(self, dst)
/// }
/// }
/// ```
///
/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`Infallible`]: core::convert::Infallible
pub trait RngCore {
/// Return the next random `u32`.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
/// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
fn next_u32(&mut self) -> u32;
/// Return the next random `u64`.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
/// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
fn next_u64(&mut self) -> u64;
/// Fill `dest` with random data.
///
/// RNGs must implement at least one method from this trait directly. In
/// the case this method is not implemented directly, it can be implemented
/// via [`impls::fill_bytes_via_next`].
///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
/// source of randomness).
fn fill_bytes(&mut self, dst: &mut [u8]);
}
impl<T: DerefMut> RngCore for T
where
T::Target: RngCore,
{
#[inline]
fn next_u32(&mut self) -> u32 {
self.deref_mut().next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.deref_mut().next_u64()
}
#[inline]
fn fill_bytes(&mut self, dst: &mut [u8]) {
self.deref_mut().fill_bytes(dst);
}
}
/// A marker trait used to indicate that an [`RngCore`] implementation is
/// supposed to be cryptographically secure.
///
/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
/// satisfy an additional properties over other generators: given the first
/// *k* bits of an algorithm's output
/// sequence, it should not be possible using polynomial-time algorithms to
/// predict the next bit with probability significantly greater than 50%.
///
/// Some generators may satisfy an additional property, however this is not
/// required by this trait: if the CSPRNG's state is revealed, it should not be
/// computationally-feasible to reconstruct output prior to this. Some other
/// generators allow backwards-computation and are considered *reversible*.
///
/// Note that this trait is provided for guidance only and cannot guarantee
/// suitability for cryptographic applications. In general it should only be
/// implemented for well-reviewed code implementing well-regarded algorithms.
///
/// Note also that use of a `CryptoRng` does not protect against other
/// weaknesses such as seeding from a weak entropy source or leaking state.
///
/// Note that implementors of [`CryptoRng`] also automatically implement
/// the [`TryCryptoRng`] trait.
///
/// [`BlockRngCore`]: block::BlockRngCore
/// [`Infallible`]: core::convert::Infallible
pub trait CryptoRng: RngCore {}
impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}
/// A potentially fallible version of [`RngCore`].
///
/// This trait is primarily used for IO-based generators such as [`OsRng`].
///
/// Most of higher-level generic code in the `rand` crate is built on top
/// of the the [`RngCore`] trait. Users can transform a fallible RNG
/// (i.e. [`TryRngCore`] implementor) into an "infallible" (but potentially
/// panicking) RNG (i.e. [`RngCore`] implementor) using the [`UnwrapErr`] wrapper.
///
/// [`RngCore`] implementors also usually implement [`TryRngCore`] with the `Error`
/// associated type being equal to [`Infallible`][core::convert::Infallible].
/// In other words, users can use [`TryRngCore`] to generalize over fallible and
/// infallible RNGs.
pub trait TryRngCore {
/// The type returned in the event of a RNG error.
type Error: fmt::Debug + fmt::Display;
/// Return the next random `u32`.
fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
/// Return the next random `u64`.
fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
/// Fill `dest` entirely with random data.
fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;
/// Wrap RNG with the [`UnwrapErr`] wrapper.
fn unwrap_err(self) -> UnwrapErr<Self>
where
Self: Sized,
{
UnwrapErr(self)
}
/// Convert an [`RngCore`] to a [`RngReadAdapter`].
#[cfg(feature = "std")]
fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
where
Self: Sized,
{
RngReadAdapter { inner: self }
}
}
// Note that, unfortunately, this blanket impl prevents us from implementing
// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
impl<R: RngCore> TryRngCore for R {
type Error = core::convert::Infallible;
#[inline]
fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
Ok(self.next_u32())
}
#[inline]
fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
Ok(self.next_u64())
}
#[inline]
fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
self.fill_bytes(dst);
Ok(())
}
}
/// A marker trait used to indicate that a [`TryRngCore`] implementation is
/// supposed to be cryptographically secure.
///
/// See [`CryptoRng`] docs for more information about cryptographically secure generators.
pub trait TryCryptoRng: TryRngCore {}
impl<R: CryptoRng> TryCryptoRng for R {}
/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
/// by panicking on potential errors.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
pub struct UnwrapErr<R: TryRngCore>(pub R);
impl<R: TryRngCore> RngCore for UnwrapErr<R> {
#[inline]
fn next_u32(&mut self) -> u32 {
self.0.try_next_u32().unwrap()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.0.try_next_u64().unwrap()
}
#[inline]
fn fill_bytes(&mut self, dst: &mut [u8]) {
self.0.try_fill_bytes(dst).unwrap()
}
}
impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}
/// A random number generator that can be explicitly seeded.
///
/// This trait encapsulates the low-level functionality common to all
/// pseudo-random number generators (PRNGs, or algorithmic generators).
///
/// [`rand`]: https://docs.rs/rand
pub trait SeedableRng: Sized {
/// Seed type, which is restricted to types mutably-dereferenceable as `u8`
/// arrays (we recommend `[u8; N]` for some `N`).
///
/// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
/// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
/// partially overlapping periods.
///
/// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
///
///
/// # Implementing `SeedableRng` for RNGs with large seeds
///
/// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
/// `N` > 32. To be able to implement the traits required by `SeedableRng`
/// for RNGs with such large seeds, the newtype pattern can be used:
///
/// ```
/// use rand_core::SeedableRng;
///
/// const N: usize = 64;
/// #[derive(Clone)]
/// pub struct MyRngSeed(pub [u8; N]);
/// # #[allow(dead_code)]
/// pub struct MyRng(MyRngSeed);
///
/// impl Default for MyRngSeed {
/// fn default() -> MyRngSeed {
/// MyRngSeed([0; N])
/// }
/// }
///
/// impl AsRef<[u8]> for MyRngSeed {
/// fn as_ref(&self) -> &[u8] {
/// &self.0
/// }
/// }
///
/// impl AsMut<[u8]> for MyRngSeed {
/// fn as_mut(&mut self) -> &mut [u8] {
/// &mut self.0
/// }
/// }
///
/// impl SeedableRng for MyRng {
/// type Seed = MyRngSeed;
///
/// fn from_seed(seed: MyRngSeed) -> MyRng {
/// MyRng(seed)
/// }
/// }
/// ```
type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;
/// Create a new PRNG using the given seed.
///
/// PRNG implementations are allowed to assume that bits in the seed are
/// well distributed. That means usually that the number of one and zero
/// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
/// Note that many non-cryptographic PRNGs will show poor quality output
/// if this is not adhered to. If you wish to seed from simple numbers, use
/// `seed_from_u64` instead.
///
/// All PRNG implementations should be reproducible unless otherwise noted:
/// given a fixed `seed`, the same sequence of output should be produced
/// on all runs, library versions and architectures (e.g. check endianness).
/// Any "value-breaking" changes to the generator should require bumping at
/// least the minor version and documentation of the change.
///
/// It is not required that this function yield the same state as a
/// reference implementation of the PRNG given equivalent seed; if necessary
/// another constructor replicating behaviour from a reference
/// implementation can be added.
///
/// PRNG implementations should make sure `from_seed` never panics. In the
/// case that some special values (like an all zero seed) are not viable
/// seeds it is preferable to map these to alternative constant value(s),
/// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
/// seed"). This is assuming only a small number of values must be rejected.
fn from_seed(seed: Self::Seed) -> Self;
/// Create a new PRNG using a `u64` seed.
///
/// This is a convenience-wrapper around `from_seed` to allow construction
/// of any `SeedableRng` from a simple `u64` value. It is designed such that
/// low Hamming Weight numbers like 0 and 1 can be used and should still
/// result in good, independent seeds to the PRNG which is returned.
///
/// This **is not suitable for cryptography**, as should be clear given that
/// the input size is only 64 bits.
///
/// Implementations for PRNGs *may* provide their own implementations of
/// this function, but the default implementation should be good enough for
/// all purposes. *Changing* the implementation of this function should be
/// considered a value-breaking change.
fn seed_from_u64(mut state: u64) -> Self {
// We use PCG32 to generate a u32 sequence, and copy to the seed
fn pcg32(state: &mut u64) -> [u8; 4] {
const MUL: u64 = 6364136223846793005;
const INC: u64 = 11634580027462260723;
// We advance the state first (to get away from the input value,
// in case it has low Hamming Weight).
*state = state.wrapping_mul(MUL).wrapping_add(INC);
let state = *state;
// Use PCG output function with to_le to generate x:
let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
let rot = (state >> 59) as u32;
let x = xorshifted.rotate_right(rot);
x.to_le_bytes()
}
let mut seed = Self::Seed::default();
let mut iter = seed.as_mut().chunks_exact_mut(4);
for chunk in &mut iter {
chunk.copy_from_slice(&pcg32(&mut state));
}
let rem = iter.into_remainder();
if !rem.is_empty() {
rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
}
Self::from_seed(seed)
}
/// Create a new PRNG seeded from an infallible `Rng`.
///
/// This may be useful when needing to rapidly seed many PRNGs from a master
/// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
///
/// The master PRNG should be at least as high quality as the child PRNGs.
/// When seeding non-cryptographic child PRNGs, we recommend using a
/// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
/// correlations between the child PRNGs. If this is not possible (e.g.
/// forking using small non-crypto PRNGs) ensure that your PRNG has a good
/// mixing function on the output or consider use of a hash function with
/// `from_seed`.
///
/// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
/// extreme example of what can go wrong: the new PRNG will be a clone
/// of the parent.
///
/// PRNG implementations are allowed to assume that a good RNG is provided
/// for seeding, and that it is cryptographically secure when appropriate.
/// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
/// method should ensure the implementation satisfies reproducibility
/// (in prior versions this was not required).
///
/// [`rand`]: https://docs.rs/rand
fn from_rng(rng: &mut impl RngCore) -> Self {
let mut seed = Self::Seed::default();
rng.fill_bytes(seed.as_mut());
Self::from_seed(seed)
}
/// Create a new PRNG seeded from a potentially fallible `Rng`.
///
/// See [`from_rng`][SeedableRng::from_rng] docs for more information.
fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> {
let mut seed = Self::Seed::default();
rng.try_fill_bytes(seed.as_mut())?;
Ok(Self::from_seed(seed))
}
/// Creates a new instance of the RNG seeded via [`getrandom`].
///
/// This method is the recommended way to construct non-deterministic PRNGs
/// since it is convenient and secure.
///
/// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
/// If it's not desirable, use the [`try_from_os_rng`] method instead.
///
/// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
/// issue, one may prefer to seed from a local PRNG, e.g.
/// `from_rng(rand::rng()).unwrap()`.
///
/// # Panics
///
/// If [`getrandom`] is unable to provide secure entropy this method will panic.
///
/// [`getrandom`]: https://docs.rs/getrandom
/// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
#[cfg(feature = "getrandom")]
fn from_os_rng() -> Self {
match Self::try_from_os_rng() {
Ok(res) => res,
Err(err) => panic!("from_os_rng failed: {}", err),
}
}
/// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
/// potential [`getrandom`] errors.
///
/// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
/// issue, one may prefer to seed from a local PRNG, e.g.
/// `from_rng(&mut rand::rng()).unwrap()`.
///
/// [`getrandom`]: https://docs.rs/getrandom
#[cfg(feature = "getrandom")]
fn try_from_os_rng() -> Result<Self, getrandom::Error> {
let mut seed = Self::Seed::default();
getrandom::getrandom(seed.as_mut())?;
let res = Self::from_seed(seed);
Ok(res)
}
}
/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
///
/// # Examples
///
/// ```no_run
/// # use std::{io, io::Read};
/// # use std::fs::File;
/// # use rand_core::{OsRng, TryRngCore};
///
/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
/// ```
#[cfg(feature = "std")]
pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
inner: &'a mut R,
}
#[cfg(feature = "std")]
impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
self.inner.try_fill_bytes(buf).map_err(|err| {
std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}"))
})?;
Ok(buf.len())
}
}
#[cfg(feature = "std")]
impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ReadAdapter").finish()
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_seed_from_u64() {
struct SeedableNum(u64);
impl SeedableRng for SeedableNum {
type Seed = [u8; 8];
fn from_seed(seed: Self::Seed) -> Self {
let mut x = [0u64; 1];
le::read_u64_into(&seed, &mut x);
SeedableNum(x[0])
}
}
const N: usize = 8;
const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
let mut results = [0u64; N];
for (i, seed) in SEEDS.iter().enumerate() {
let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
results[i] = x;
}
for (i1, r1) in results.iter().enumerate() {
let weight = r1.count_ones();
// This is the binomial distribution B(64, 0.5), so chance of
// weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
// weight > 44.
assert!((20..=44).contains(&weight));
for (i2, r2) in results.iter().enumerate() {
if i1 == i2 {
continue;
}
let diff_weight = (r1 ^ r2).count_ones();
assert!(diff_weight >= 20);
}
}
// value-breakage test:
assert_eq!(results[0], 5029875928683246316);
}
}