rand_core/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
// Copyright 2018 Developers of the Rand project.
// Copyright 2017-2018 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Random number generation traits
//!
//! This crate is mainly of interest to crates publishing implementations of
//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
//! which re-exports the main traits and error types.
//!
//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
//! generators and external random-number sources.
//!
//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
//! other random number generators.
//!
//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
//! implementation of [`RngCore`].
//!
//! [`rand`]: https://docs.rs/rand

#![doc(
    html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
    html_favicon_url = "https://www.rust-lang.org/favicon.ico",
    html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![no_std]

#[cfg(feature = "std")]
extern crate std;

use core::{fmt, ops::DerefMut};

pub mod block;
pub mod impls;
pub mod le;
#[cfg(feature = "os_rng")]
mod os;

#[cfg(feature = "os_rng")]
pub use os::{OsError, OsRng};

/// Implementation-level interface for RNGs
///
/// This trait encapsulates the low-level functionality common to all
/// generators, and is the "back end", to be implemented by generators.
/// End users should normally use the [`rand::Rng`] trait
/// which is automatically implemented for every type implementing `RngCore`.
///
/// Three different methods for generating random data are provided since the
/// optimal implementation of each is dependent on the type of generator. There
/// is no required relationship between the output of each; e.g. many
/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
/// values and drop any remaining unused bytes. The same can happen with the
/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
/// random bits for efficiency.
///
/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
/// returning the same value, or never setting certain bits) can break rejection
/// sampling used by random distributions, and also break other RNGs when
/// seeding them via [`SeedableRng::from_rng`].
///
/// Algorithmic generators implementing [`SeedableRng`] should normally have
/// *portable, reproducible* output, i.e. fix Endianness when converting values
/// to avoid platform differences, and avoid making any changes which affect
/// output (except by communicating that the release has breaking changes).
///
/// Typically an RNG will implement only one of the methods available
/// in this trait directly, then use the helper functions from the
/// [`impls`] module to implement the other methods.
///
/// Note that implementors of [`RngCore`] also automatically implement
/// the [`TryRngCore`] trait with the `Error` associated type being
/// equal to [`Infallible`].
///
/// It is recommended that implementations also implement:
///
/// - `Debug` with a custom implementation which *does not* print any internal
///   state (at least, [`CryptoRng`]s should not risk leaking state through
///   `Debug`).
/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
///   support optional at the crate level in PRNG libs.
/// - `Clone`, if possible.
/// - *never* implement `Copy` (accidental copies may cause repeated values).
/// - *do not* implement `Default` for pseudorandom generators, but instead
///   implement [`SeedableRng`], to guide users towards proper seeding.
///   External / hardware RNGs can choose to implement `Default`.
/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
///
/// # Example
///
/// A simple example, obviously not generating very *random* output:
///
/// ```
/// #![allow(dead_code)]
/// use rand_core::{RngCore, impls};
///
/// struct CountingRng(u64);
///
/// impl RngCore for CountingRng {
///     fn next_u32(&mut self) -> u32 {
///         self.next_u64() as u32
///     }
///
///     fn next_u64(&mut self) -> u64 {
///         self.0 += 1;
///         self.0
///     }
///
///     fn fill_bytes(&mut self, dst: &mut [u8]) {
///         impls::fill_bytes_via_next(self, dst)
///     }
/// }
/// ```
///
/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`next_u32`]: RngCore::next_u32
/// [`next_u64`]: RngCore::next_u64
/// [`Infallible`]: core::convert::Infallible
pub trait RngCore {
    /// Return the next random `u32`.
    ///
    /// RNGs must implement at least one method from this trait directly. In
    /// the case this method is not implemented directly, it can be implemented
    /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
    fn next_u32(&mut self) -> u32;

    /// Return the next random `u64`.
    ///
    /// RNGs must implement at least one method from this trait directly. In
    /// the case this method is not implemented directly, it can be implemented
    /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
    fn next_u64(&mut self) -> u64;

    /// Fill `dest` with random data.
    ///
    /// RNGs must implement at least one method from this trait directly. In
    /// the case this method is not implemented directly, it can be implemented
    /// via [`impls::fill_bytes_via_next`].
    ///
    /// This method should guarantee that `dest` is entirely filled
    /// with new data, and may panic if this is impossible
    /// (e.g. reading past the end of a file that is being used as the
    /// source of randomness).
    fn fill_bytes(&mut self, dst: &mut [u8]);
}

impl<T: DerefMut> RngCore for T
where
    T::Target: RngCore,
{
    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.deref_mut().next_u32()
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        self.deref_mut().next_u64()
    }

    #[inline]
    fn fill_bytes(&mut self, dst: &mut [u8]) {
        self.deref_mut().fill_bytes(dst);
    }
}

/// A marker trait used to indicate that an [`RngCore`] implementation is
/// supposed to be cryptographically secure.
///
/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
/// satisfy an additional properties over other generators: given the first
/// *k* bits of an algorithm's output
/// sequence, it should not be possible using polynomial-time algorithms to
/// predict the next bit with probability significantly greater than 50%.
///
/// Some generators may satisfy an additional property, however this is not
/// required by this trait: if the CSPRNG's state is revealed, it should not be
/// computationally-feasible to reconstruct output prior to this. Some other
/// generators allow backwards-computation and are considered *reversible*.
///
/// Note that this trait is provided for guidance only and cannot guarantee
/// suitability for cryptographic applications. In general it should only be
/// implemented for well-reviewed code implementing well-regarded algorithms.
///
/// Note also that use of a `CryptoRng` does not protect against other
/// weaknesses such as seeding from a weak entropy source or leaking state.
///
/// Note that implementors of [`CryptoRng`] also automatically implement
/// the [`TryCryptoRng`] trait.
///
/// [`BlockRngCore`]: block::BlockRngCore
/// [`Infallible`]: core::convert::Infallible
pub trait CryptoRng: RngCore {}

impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}

/// A potentially fallible version of [`RngCore`].
///
/// This trait is primarily used for IO-based generators such as [`OsRng`].
///
/// Most of higher-level generic code in the `rand` crate is built on top
/// of the the [`RngCore`] trait. Users can transform a fallible RNG
/// (i.e. [`TryRngCore`] implementor) into an "infallible" (but potentially
/// panicking) RNG (i.e. [`RngCore`] implementor) using the [`UnwrapErr`] wrapper.
///
/// [`RngCore`] implementors also usually implement [`TryRngCore`] with the `Error`
/// associated type being equal to [`Infallible`][core::convert::Infallible].
/// In other words, users can use [`TryRngCore`] to generalize over fallible and
/// infallible RNGs.
pub trait TryRngCore {
    /// The type returned in the event of a RNG error.
    type Error: fmt::Debug + fmt::Display;

    /// Return the next random `u32`.
    fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
    /// Return the next random `u64`.
    fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
    /// Fill `dest` entirely with random data.
    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;

    /// Wrap RNG with the [`UnwrapErr`] wrapper.
    fn unwrap_err(self) -> UnwrapErr<Self>
    where
        Self: Sized,
    {
        UnwrapErr(self)
    }

    /// Convert an [`RngCore`] to a [`RngReadAdapter`].
    #[cfg(feature = "std")]
    fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
    where
        Self: Sized,
    {
        RngReadAdapter { inner: self }
    }
}

// Note that, unfortunately, this blanket impl prevents us from implementing
// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
impl<R: RngCore> TryRngCore for R {
    type Error = core::convert::Infallible;

    #[inline]
    fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
        Ok(self.next_u32())
    }

    #[inline]
    fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
        Ok(self.next_u64())
    }

    #[inline]
    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
        self.fill_bytes(dst);
        Ok(())
    }
}

/// A marker trait used to indicate that a [`TryRngCore`] implementation is
/// supposed to be cryptographically secure.
///
/// See [`CryptoRng`] docs for more information about cryptographically secure generators.
pub trait TryCryptoRng: TryRngCore {}

impl<R: CryptoRng> TryCryptoRng for R {}

/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
/// by panicking on potential errors.
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
pub struct UnwrapErr<R: TryRngCore>(pub R);

impl<R: TryRngCore> RngCore for UnwrapErr<R> {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.0.try_next_u32().unwrap()
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        self.0.try_next_u64().unwrap()
    }

    #[inline]
    fn fill_bytes(&mut self, dst: &mut [u8]) {
        self.0.try_fill_bytes(dst).unwrap()
    }
}

impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}

/// A random number generator that can be explicitly seeded.
///
/// This trait encapsulates the low-level functionality common to all
/// pseudo-random number generators (PRNGs, or algorithmic generators).
///
/// [`rand`]: https://docs.rs/rand
pub trait SeedableRng: Sized {
    /// Seed type, which is restricted to types mutably-dereferenceable as `u8`
    /// arrays (we recommend `[u8; N]` for some `N`).
    ///
    /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
    /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
    /// partially overlapping periods.
    ///
    /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
    ///
    ///
    /// # Implementing `SeedableRng` for RNGs with large seeds
    ///
    /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
    /// `N` > 32. To be able to implement the traits required by `SeedableRng`
    /// for RNGs with such large seeds, the newtype pattern can be used:
    ///
    /// ```
    /// use rand_core::SeedableRng;
    ///
    /// const N: usize = 64;
    /// #[derive(Clone)]
    /// pub struct MyRngSeed(pub [u8; N]);
    /// # #[allow(dead_code)]
    /// pub struct MyRng(MyRngSeed);
    ///
    /// impl Default for MyRngSeed {
    ///     fn default() -> MyRngSeed {
    ///         MyRngSeed([0; N])
    ///     }
    /// }
    ///
    /// impl AsRef<[u8]> for MyRngSeed {
    ///     fn as_ref(&self) -> &[u8] {
    ///         &self.0
    ///     }
    /// }
    ///
    /// impl AsMut<[u8]> for MyRngSeed {
    ///     fn as_mut(&mut self) -> &mut [u8] {
    ///         &mut self.0
    ///     }
    /// }
    ///
    /// impl SeedableRng for MyRng {
    ///     type Seed = MyRngSeed;
    ///
    ///     fn from_seed(seed: MyRngSeed) -> MyRng {
    ///         MyRng(seed)
    ///     }
    /// }
    /// ```
    type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;

    /// Create a new PRNG using the given seed.
    ///
    /// PRNG implementations are allowed to assume that bits in the seed are
    /// well distributed. That means usually that the number of one and zero
    /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
    /// Note that many non-cryptographic PRNGs will show poor quality output
    /// if this is not adhered to. If you wish to seed from simple numbers, use
    /// `seed_from_u64` instead.
    ///
    /// All PRNG implementations should be reproducible unless otherwise noted:
    /// given a fixed `seed`, the same sequence of output should be produced
    /// on all runs, library versions and architectures (e.g. check endianness).
    /// Any "value-breaking" changes to the generator should require bumping at
    /// least the minor version and documentation of the change.
    ///
    /// It is not required that this function yield the same state as a
    /// reference implementation of the PRNG given equivalent seed; if necessary
    /// another constructor replicating behaviour from a reference
    /// implementation can be added.
    ///
    /// PRNG implementations should make sure `from_seed` never panics. In the
    /// case that some special values (like an all zero seed) are not viable
    /// seeds it is preferable to map these to alternative constant value(s),
    /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
    /// seed"). This is assuming only a small number of values must be rejected.
    fn from_seed(seed: Self::Seed) -> Self;

    /// Create a new PRNG using a `u64` seed.
    ///
    /// This is a convenience-wrapper around `from_seed` to allow construction
    /// of any `SeedableRng` from a simple `u64` value. It is designed such that
    /// low Hamming Weight numbers like 0 and 1 can be used and should still
    /// result in good, independent seeds to the PRNG which is returned.
    ///
    /// This **is not suitable for cryptography**, as should be clear given that
    /// the input size is only 64 bits.
    ///
    /// Implementations for PRNGs *may* provide their own implementations of
    /// this function, but the default implementation should be good enough for
    /// all purposes. *Changing* the implementation of this function should be
    /// considered a value-breaking change.
    fn seed_from_u64(mut state: u64) -> Self {
        // We use PCG32 to generate a u32 sequence, and copy to the seed
        fn pcg32(state: &mut u64) -> [u8; 4] {
            const MUL: u64 = 6364136223846793005;
            const INC: u64 = 11634580027462260723;

            // We advance the state first (to get away from the input value,
            // in case it has low Hamming Weight).
            *state = state.wrapping_mul(MUL).wrapping_add(INC);
            let state = *state;

            // Use PCG output function with to_le to generate x:
            let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
            let rot = (state >> 59) as u32;
            let x = xorshifted.rotate_right(rot);
            x.to_le_bytes()
        }

        let mut seed = Self::Seed::default();
        let mut iter = seed.as_mut().chunks_exact_mut(4);
        for chunk in &mut iter {
            chunk.copy_from_slice(&pcg32(&mut state));
        }
        let rem = iter.into_remainder();
        if !rem.is_empty() {
            rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
        }

        Self::from_seed(seed)
    }

    /// Create a new PRNG seeded from an infallible `Rng`.
    ///
    /// This may be useful when needing to rapidly seed many PRNGs from a master
    /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
    ///
    /// The master PRNG should be at least as high quality as the child PRNGs.
    /// When seeding non-cryptographic child PRNGs, we recommend using a
    /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
    /// correlations between the child PRNGs. If this is not possible (e.g.
    /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
    /// mixing function on the output or consider use of a hash function with
    /// `from_seed`.
    ///
    /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
    /// extreme example of what can go wrong: the new PRNG will be a clone
    /// of the parent.
    ///
    /// PRNG implementations are allowed to assume that a good RNG is provided
    /// for seeding, and that it is cryptographically secure when appropriate.
    /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
    /// method should ensure the implementation satisfies reproducibility
    /// (in prior versions this was not required).
    ///
    /// [`rand`]: https://docs.rs/rand
    fn from_rng(rng: &mut impl RngCore) -> Self {
        let mut seed = Self::Seed::default();
        rng.fill_bytes(seed.as_mut());
        Self::from_seed(seed)
    }

    /// Create a new PRNG seeded from a potentially fallible `Rng`.
    ///
    /// See [`from_rng`][SeedableRng::from_rng] docs for more information.
    fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> {
        let mut seed = Self::Seed::default();
        rng.try_fill_bytes(seed.as_mut())?;
        Ok(Self::from_seed(seed))
    }

    /// Creates a new instance of the RNG seeded via [`getrandom`].
    ///
    /// This method is the recommended way to construct non-deterministic PRNGs
    /// since it is convenient and secure.
    ///
    /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
    /// If it's not desirable, use the [`try_from_os_rng`] method instead.
    ///
    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
    /// issue, one may prefer to seed from a local PRNG, e.g.
    /// `from_rng(rand::rng()).unwrap()`.
    ///
    /// # Panics
    ///
    /// If [`getrandom`] is unable to provide secure entropy this method will panic.
    ///
    /// [`getrandom`]: https://docs.rs/getrandom
    /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
    #[cfg(feature = "os_rng")]
    fn from_os_rng() -> Self {
        match Self::try_from_os_rng() {
            Ok(res) => res,
            Err(err) => panic!("from_os_rng failed: {}", err),
        }
    }

    /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
    /// potential [`getrandom`] errors.
    ///
    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
    /// issue, one may prefer to seed from a local PRNG, e.g.
    /// `from_rng(&mut rand::rng()).unwrap()`.
    ///
    /// [`getrandom`]: https://docs.rs/getrandom
    #[cfg(feature = "os_rng")]
    fn try_from_os_rng() -> Result<Self, getrandom::Error> {
        let mut seed = Self::Seed::default();
        getrandom::fill(seed.as_mut())?;
        let res = Self::from_seed(seed);
        Ok(res)
    }
}

/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
///
/// # Examples
///
/// ```no_run
/// # use std::{io, io::Read};
/// # use std::fs::File;
/// # use rand_core::{OsRng, TryRngCore};
///
/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
/// ```
#[cfg(feature = "std")]
pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
    inner: &'a mut R,
}

#[cfg(feature = "std")]
impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
    #[inline]
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
        self.inner.try_fill_bytes(buf).map_err(|err| {
            std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}"))
        })?;
        Ok(buf.len())
    }
}

#[cfg(feature = "std")]
impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ReadAdapter").finish()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_seed_from_u64() {
        struct SeedableNum(u64);
        impl SeedableRng for SeedableNum {
            type Seed = [u8; 8];

            fn from_seed(seed: Self::Seed) -> Self {
                let mut x = [0u64; 1];
                le::read_u64_into(&seed, &mut x);
                SeedableNum(x[0])
            }
        }

        const N: usize = 8;
        const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
        let mut results = [0u64; N];
        for (i, seed) in SEEDS.iter().enumerate() {
            let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
            results[i] = x;
        }

        for (i1, r1) in results.iter().enumerate() {
            let weight = r1.count_ones();
            // This is the binomial distribution B(64, 0.5), so chance of
            // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
            // weight > 44.
            assert!((20..=44).contains(&weight));

            for (i2, r2) in results.iter().enumerate() {
                if i1 == i2 {
                    continue;
                }
                let diff_weight = (r1 ^ r2).count_ones();
                assert!(diff_weight >= 20);
            }
        }

        // value-breakage test:
        assert_eq!(results[0], 5029875928683246316);
    }
}