rand_core/
lib.rs

1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017-2018 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! Random number generation traits
11//!
12//! This crate is mainly of interest to crates publishing implementations of
13//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14//! which re-exports the main traits and error types.
15//!
16//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17//! generators and external random-number sources.
18//!
19//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20//! other random number generators.
21//!
22//! The [`le`] sub-module includes a few small functions to assist
23//! implementation of [`RngCore`] and [`SeedableRng`].
24//!
25//! [`rand`]: https://docs.rs/rand
26
27#![doc(
28    html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
29    html_favicon_url = "https://www.rust-lang.org/favicon.ico",
30    html_root_url = "https://rust-random.github.io/rand/"
31)]
32#![deny(missing_docs)]
33#![deny(missing_debug_implementations)]
34#![deny(clippy::undocumented_unsafe_blocks)]
35#![doc(test(attr(allow(unused_variables), deny(warnings))))]
36#![cfg_attr(docsrs, feature(doc_cfg))]
37#![no_std]
38
39#[cfg(feature = "std")]
40extern crate std;
41
42use core::{fmt, ops::DerefMut};
43
44pub mod block;
45pub mod le;
46#[cfg(feature = "os_rng")]
47mod os;
48
49#[cfg(feature = "os_rng")]
50pub use os::{OsError, OsRng};
51
52/// Implementation-level interface for RNGs
53///
54/// This trait encapsulates the low-level functionality common to all
55/// generators, and is the "back end", to be implemented by generators.
56/// End users should normally use the [`rand::Rng`] trait
57/// which is automatically implemented for every type implementing `RngCore`.
58///
59/// Three different methods for generating random data are provided since the
60/// optimal implementation of each is dependent on the type of generator. There
61/// is no required relationship between the output of each; e.g. many
62/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
63/// values and drop any remaining unused bytes. The same can happen with the
64/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
65/// random bits for efficiency.
66///
67/// # Properties of a generator
68///
69/// Implementers should produce bits uniformly. Pathological RNGs (e.g. constant
70/// or counting generators which rarely change some bits) may cause issues in
71/// consumers of random data, for example dead-locks in rejection samplers and
72/// obviously non-random output (e.g. a counting generator may result in
73/// apparently-constant output from a uniform-ranged distribution).
74///
75/// Algorithmic generators implementing [`SeedableRng`] should normally have
76/// *portable, reproducible* output, i.e. fix Endianness when converting values
77/// to avoid platform differences, and avoid making any changes which affect
78/// output (except by communicating that the release has breaking changes).
79///
80/// # Implementing `RngCore`
81///
82/// Typically an RNG will implement only one of the methods available
83/// in this trait directly, then use the helper functions from the
84/// [`le` module](crate::le) to implement the other methods.
85///
86/// Note that implementors of [`RngCore`] also automatically implement
87/// the [`TryRngCore`] trait with the `Error` associated type being
88/// equal to [`Infallible`].
89///
90/// It is recommended that implementations also implement:
91///
92/// - `Debug` with a custom implementation which *does not* print any internal
93///   state (at least, [`CryptoRng`]s should not risk leaking state through
94///   `Debug`).
95/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
96///   support optional at the crate level in PRNG libs.
97/// - `Clone`, if possible.
98/// - *never* implement `Copy` (accidental copies may cause repeated values).
99/// - *do not* implement `Default` for pseudorandom generators, but instead
100///   implement [`SeedableRng`], to guide users towards proper seeding.
101///   External / hardware RNGs can choose to implement `Default`.
102/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
103///
104/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
105/// [`fill_bytes`]: RngCore::fill_bytes
106/// [`next_u32`]: RngCore::next_u32
107/// [`next_u64`]: RngCore::next_u64
108/// [`Infallible`]: core::convert::Infallible
109pub trait RngCore {
110    /// Return the next random `u32`.
111    fn next_u32(&mut self) -> u32;
112
113    /// Return the next random `u64`.
114    fn next_u64(&mut self) -> u64;
115
116    /// Fill `dest` with random data.
117    ///
118    /// This method should guarantee that `dest` is entirely filled
119    /// with new data, and may panic if this is impossible
120    /// (e.g. reading past the end of a file that is being used as the
121    /// source of randomness).
122    fn fill_bytes(&mut self, dst: &mut [u8]);
123}
124
125impl<T: DerefMut> RngCore for T
126where
127    T::Target: RngCore,
128{
129    #[inline]
130    fn next_u32(&mut self) -> u32 {
131        self.deref_mut().next_u32()
132    }
133
134    #[inline]
135    fn next_u64(&mut self) -> u64 {
136        self.deref_mut().next_u64()
137    }
138
139    #[inline]
140    fn fill_bytes(&mut self, dst: &mut [u8]) {
141        self.deref_mut().fill_bytes(dst);
142    }
143}
144
145/// A marker trait over [`RngCore`] for securely unpredictable RNGs
146///
147/// This marker trait indicates that the implementing generator is intended,
148/// when correctly seeded and protected from side-channel attacks such as a
149/// leaking of state, to be a cryptographically secure generator. This trait is
150/// provided as a tool to aid review of cryptographic code, but does not by
151/// itself guarantee suitability for cryptographic applications.
152///
153/// Implementors of `CryptoRng` automatically implement the [`TryCryptoRng`]
154/// trait.
155///
156/// Implementors of `CryptoRng` should only implement [`Default`] if the
157/// `default()` instances are themselves secure generators: for example if the
158/// implementing type is a stateless interface over a secure external generator
159/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
160///
161/// Formally, a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator)
162/// should satisfy an additional property over other generators: assuming that
163/// the generator has been appropriately seeded and has unknown state, then
164/// given the first *k* bits of an algorithm's output
165/// sequence, it should not be possible using polynomial-time algorithms to
166/// predict the next bit with probability significantly greater than 50%.
167///
168/// An optional property of CSPRNGs is backtracking resistance: if the CSPRNG's
169/// state is revealed, it will not be computationally-feasible to reconstruct
170/// prior output values. This property is not required by `CryptoRng`.
171pub trait CryptoRng: RngCore {}
172
173impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}
174
175/// A potentially fallible variant of [`RngCore`]
176///
177/// This trait is a generalization of [`RngCore`] to support potentially-
178/// fallible IO-based generators such as [`OsRng`].
179///
180/// All implementations of [`RngCore`] automatically support this `TryRngCore`
181/// trait, using [`Infallible`][core::convert::Infallible] as the associated
182/// `Error` type.
183///
184/// An implementation of this trait may be made compatible with code requiring
185/// an [`RngCore`] through [`TryRngCore::unwrap_err`]. The resulting RNG will
186/// panic in case the underlying fallible RNG yields an error.
187pub trait TryRngCore {
188    /// The type returned in the event of a RNG error.
189    type Error: fmt::Debug + fmt::Display;
190
191    /// Return the next random `u32`.
192    fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
193    /// Return the next random `u64`.
194    fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
195    /// Fill `dest` entirely with random data.
196    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;
197
198    /// Wrap RNG with the [`UnwrapErr`] wrapper.
199    fn unwrap_err(self) -> UnwrapErr<Self>
200    where
201        Self: Sized,
202    {
203        UnwrapErr(self)
204    }
205
206    /// Wrap RNG with the [`UnwrapMut`] wrapper.
207    fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self> {
208        UnwrapMut(self)
209    }
210
211    /// Convert an [`RngCore`] to a [`RngReadAdapter`].
212    #[cfg(feature = "std")]
213    fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
214    where
215        Self: Sized,
216    {
217        RngReadAdapter { inner: self }
218    }
219}
220
221// Note that, unfortunately, this blanket impl prevents us from implementing
222// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
223// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
224impl<R: RngCore + ?Sized> TryRngCore for R {
225    type Error = core::convert::Infallible;
226
227    #[inline]
228    fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
229        Ok(self.next_u32())
230    }
231
232    #[inline]
233    fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
234        Ok(self.next_u64())
235    }
236
237    #[inline]
238    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
239        self.fill_bytes(dst);
240        Ok(())
241    }
242}
243
244/// A marker trait over [`TryRngCore`] for securely unpredictable RNGs
245///
246/// This trait is like [`CryptoRng`] but for the trait [`TryRngCore`].
247///
248/// This marker trait indicates that the implementing generator is intended,
249/// when correctly seeded and protected from side-channel attacks such as a
250/// leaking of state, to be a cryptographically secure generator. This trait is
251/// provided as a tool to aid review of cryptographic code, but does not by
252/// itself guarantee suitability for cryptographic applications.
253///
254/// Implementors of `TryCryptoRng` should only implement [`Default`] if the
255/// `default()` instances are themselves secure generators: for example if the
256/// implementing type is a stateless interface over a secure external generator
257/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
258pub trait TryCryptoRng: TryRngCore {}
259
260impl<R: CryptoRng + ?Sized> TryCryptoRng for R {}
261
262/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
263/// by panicking on potential errors.
264#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
265pub struct UnwrapErr<R: TryRngCore>(pub R);
266
267impl<R: TryRngCore> RngCore for UnwrapErr<R> {
268    #[inline]
269    fn next_u32(&mut self) -> u32 {
270        self.0.try_next_u32().unwrap()
271    }
272
273    #[inline]
274    fn next_u64(&mut self) -> u64 {
275        self.0.try_next_u64().unwrap()
276    }
277
278    #[inline]
279    fn fill_bytes(&mut self, dst: &mut [u8]) {
280        self.0.try_fill_bytes(dst).unwrap()
281    }
282}
283
284impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}
285
286/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
287/// by panicking on potential errors.
288#[derive(Debug, Eq, PartialEq, Hash)]
289pub struct UnwrapMut<'r, R: TryRngCore + ?Sized>(pub &'r mut R);
290
291impl<'r, R: TryRngCore + ?Sized> UnwrapMut<'r, R> {
292    /// Reborrow with a new lifetime
293    ///
294    /// Rust allows references like `&T` or `&mut T` to be "reborrowed" through
295    /// coercion: essentially, the pointer is copied under a new, shorter, lifetime.
296    /// Until rfcs#1403 lands, reborrows on user types require a method call.
297    #[inline(always)]
298    pub fn re<'b>(&'b mut self) -> UnwrapMut<'b, R>
299    where
300        'r: 'b,
301    {
302        UnwrapMut(self.0)
303    }
304}
305
306impl<R: TryRngCore + ?Sized> RngCore for UnwrapMut<'_, R> {
307    #[inline]
308    fn next_u32(&mut self) -> u32 {
309        self.0.try_next_u32().unwrap()
310    }
311
312    #[inline]
313    fn next_u64(&mut self) -> u64 {
314        self.0.try_next_u64().unwrap()
315    }
316
317    #[inline]
318    fn fill_bytes(&mut self, dst: &mut [u8]) {
319        self.0.try_fill_bytes(dst).unwrap()
320    }
321}
322
323impl<R: TryCryptoRng + ?Sized> CryptoRng for UnwrapMut<'_, R> {}
324
325/// A random number generator that can be explicitly seeded.
326///
327/// This trait encapsulates the low-level functionality common to all
328/// pseudo-random number generators (PRNGs, or algorithmic generators).
329///
330/// A generator implementing `SeedableRng` will usually be deterministic, but
331/// beware that portability and reproducibility of results **is not implied**.
332/// Refer to documentation of the generator, noting that generators named after
333/// a specific algorithm are usually tested for reproducibility against a
334/// reference vector, while `SmallRng` and `StdRng` specifically opt out of
335/// reproducibility guarantees.
336///
337/// [`rand`]: https://docs.rs/rand
338pub trait SeedableRng: Sized {
339    /// Seed type, which is restricted to types mutably-dereferenceable as `u8`
340    /// arrays (we recommend `[u8; N]` for some `N`).
341    ///
342    /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
343    /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
344    /// partially overlapping periods.
345    ///
346    /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
347    ///
348    ///
349    /// # Implementing `SeedableRng` for RNGs with large seeds
350    ///
351    /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
352    /// `N` > 32. To be able to implement the traits required by `SeedableRng`
353    /// for RNGs with such large seeds, the newtype pattern can be used:
354    ///
355    /// ```
356    /// use rand_core::SeedableRng;
357    ///
358    /// const N: usize = 64;
359    /// #[derive(Clone)]
360    /// pub struct MyRngSeed(pub [u8; N]);
361    /// # #[allow(dead_code)]
362    /// pub struct MyRng(MyRngSeed);
363    ///
364    /// impl Default for MyRngSeed {
365    ///     fn default() -> MyRngSeed {
366    ///         MyRngSeed([0; N])
367    ///     }
368    /// }
369    ///
370    /// impl AsRef<[u8]> for MyRngSeed {
371    ///     fn as_ref(&self) -> &[u8] {
372    ///         &self.0
373    ///     }
374    /// }
375    ///
376    /// impl AsMut<[u8]> for MyRngSeed {
377    ///     fn as_mut(&mut self) -> &mut [u8] {
378    ///         &mut self.0
379    ///     }
380    /// }
381    ///
382    /// impl SeedableRng for MyRng {
383    ///     type Seed = MyRngSeed;
384    ///
385    ///     fn from_seed(seed: MyRngSeed) -> MyRng {
386    ///         MyRng(seed)
387    ///     }
388    /// }
389    /// ```
390    type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;
391
392    /// Create a new PRNG using the given seed.
393    ///
394    /// PRNG implementations are allowed to assume that bits in the seed are
395    /// well distributed. That means usually that the number of one and zero
396    /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
397    /// Note that many non-cryptographic PRNGs will show poor quality output
398    /// if this is not adhered to. If you wish to seed from simple numbers, use
399    /// `seed_from_u64` instead.
400    ///
401    /// All PRNG implementations should be reproducible unless otherwise noted:
402    /// given a fixed `seed`, the same sequence of output should be produced
403    /// on all runs, library versions and architectures (e.g. check endianness).
404    /// Any "value-breaking" changes to the generator should require bumping at
405    /// least the minor version and documentation of the change.
406    ///
407    /// It is not required that this function yield the same state as a
408    /// reference implementation of the PRNG given equivalent seed; if necessary
409    /// another constructor replicating behaviour from a reference
410    /// implementation can be added.
411    ///
412    /// PRNG implementations should make sure `from_seed` never panics. In the
413    /// case that some special values (like an all zero seed) are not viable
414    /// seeds it is preferable to map these to alternative constant value(s),
415    /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
416    /// seed"). This is assuming only a small number of values must be rejected.
417    fn from_seed(seed: Self::Seed) -> Self;
418
419    /// Create a new PRNG using a `u64` seed.
420    ///
421    /// This is a convenience-wrapper around `from_seed` to allow construction
422    /// of any `SeedableRng` from a simple `u64` value. It is designed such that
423    /// low Hamming Weight numbers like 0 and 1 can be used and should still
424    /// result in good, independent seeds to the PRNG which is returned.
425    ///
426    /// This **is not suitable for cryptography**, as should be clear given that
427    /// the input size is only 64 bits.
428    ///
429    /// Implementations for PRNGs *may* provide their own implementations of
430    /// this function, but the default implementation should be good enough for
431    /// all purposes. *Changing* the implementation of this function should be
432    /// considered a value-breaking change.
433    fn seed_from_u64(mut state: u64) -> Self {
434        // We use PCG32 to generate a u32 sequence, and copy to the seed
435        fn pcg32(state: &mut u64) -> [u8; 4] {
436            const MUL: u64 = 6364136223846793005;
437            const INC: u64 = 11634580027462260723;
438
439            // We advance the state first (to get away from the input value,
440            // in case it has low Hamming Weight).
441            *state = state.wrapping_mul(MUL).wrapping_add(INC);
442            let state = *state;
443
444            // Use PCG output function with to_le to generate x:
445            let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
446            let rot = (state >> 59) as u32;
447            let x = xorshifted.rotate_right(rot);
448            x.to_le_bytes()
449        }
450
451        let mut seed = Self::Seed::default();
452        let mut iter = seed.as_mut().chunks_exact_mut(4);
453        for chunk in &mut iter {
454            chunk.copy_from_slice(&pcg32(&mut state));
455        }
456        let rem = iter.into_remainder();
457        if !rem.is_empty() {
458            rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
459        }
460
461        Self::from_seed(seed)
462    }
463
464    /// Create a new PRNG seeded from an infallible `Rng`.
465    ///
466    /// This may be useful when needing to rapidly seed many PRNGs from a master
467    /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
468    ///
469    /// The master PRNG should be at least as high quality as the child PRNGs.
470    /// When seeding non-cryptographic child PRNGs, we recommend using a
471    /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
472    /// correlations between the child PRNGs. If this is not possible (e.g.
473    /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
474    /// mixing function on the output or consider use of a hash function with
475    /// `from_seed`.
476    ///
477    /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
478    /// extreme example of what can go wrong: the new PRNG will be a clone
479    /// of the parent.
480    ///
481    /// PRNG implementations are allowed to assume that a good RNG is provided
482    /// for seeding, and that it is cryptographically secure when appropriate.
483    /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
484    /// method should ensure the implementation satisfies reproducibility
485    /// (in prior versions this was not required).
486    ///
487    /// [`rand`]: https://docs.rs/rand
488    fn from_rng<R: RngCore + ?Sized>(rng: &mut R) -> Self {
489        let mut seed = Self::Seed::default();
490        rng.fill_bytes(seed.as_mut());
491        Self::from_seed(seed)
492    }
493
494    /// Create a new PRNG seeded from a potentially fallible `Rng`.
495    ///
496    /// See [`from_rng`][SeedableRng::from_rng] docs for more information.
497    fn try_from_rng<R: TryRngCore + ?Sized>(rng: &mut R) -> Result<Self, R::Error> {
498        let mut seed = Self::Seed::default();
499        rng.try_fill_bytes(seed.as_mut())?;
500        Ok(Self::from_seed(seed))
501    }
502
503    /// Creates a new instance of the RNG seeded via [`getrandom`].
504    ///
505    /// This method is the recommended way to construct non-deterministic PRNGs
506    /// since it is convenient and secure.
507    ///
508    /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
509    /// If it's not desirable, use the [`try_from_os_rng`] method instead.
510    ///
511    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
512    /// issue, one may prefer to seed from a local PRNG, e.g.
513    /// `from_rng(rand::rng()).unwrap()`.
514    ///
515    /// # Panics
516    ///
517    /// If [`getrandom`] is unable to provide secure entropy this method will panic.
518    ///
519    /// [`getrandom`]: https://docs.rs/getrandom
520    /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
521    #[cfg(feature = "os_rng")]
522    fn from_os_rng() -> Self {
523        match Self::try_from_os_rng() {
524            Ok(res) => res,
525            Err(err) => panic!("from_os_rng failed: {}", err),
526        }
527    }
528
529    /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
530    /// potential [`getrandom`] errors.
531    ///
532    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
533    /// issue, one may prefer to seed from a local PRNG, e.g.
534    /// `from_rng(&mut rand::rng()).unwrap()`.
535    ///
536    /// [`getrandom`]: https://docs.rs/getrandom
537    #[cfg(feature = "os_rng")]
538    fn try_from_os_rng() -> Result<Self, getrandom::Error> {
539        let mut seed = Self::Seed::default();
540        getrandom::fill(seed.as_mut())?;
541        let res = Self::from_seed(seed);
542        Ok(res)
543    }
544}
545
546/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
547///
548/// # Examples
549///
550/// ```no_run
551/// # use std::{io, io::Read};
552/// # use std::fs::File;
553/// # use rand_core::{OsRng, TryRngCore};
554///
555/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
556/// ```
557#[cfg(feature = "std")]
558pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
559    inner: &'a mut R,
560}
561
562#[cfg(feature = "std")]
563impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
564    #[inline]
565    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
566        self.inner
567            .try_fill_bytes(buf)
568            .map_err(|err| std::io::Error::other(std::format!("RNG error: {err}")))?;
569        Ok(buf.len())
570    }
571}
572
573#[cfg(feature = "std")]
574impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
575    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
576        f.debug_struct("ReadAdapter").finish()
577    }
578}
579
580#[cfg(test)]
581mod test {
582    use super::*;
583
584    #[test]
585    fn test_seed_from_u64() {
586        struct SeedableNum(u64);
587        impl SeedableRng for SeedableNum {
588            type Seed = [u8; 8];
589
590            fn from_seed(seed: Self::Seed) -> Self {
591                let mut x = [0u64; 1];
592                le::read_u64_into(&seed, &mut x);
593                SeedableNum(x[0])
594            }
595        }
596
597        const N: usize = 8;
598        const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
599        let mut results = [0u64; N];
600        for (i, seed) in SEEDS.iter().enumerate() {
601            let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
602            results[i] = x;
603        }
604
605        for (i1, r1) in results.iter().enumerate() {
606            let weight = r1.count_ones();
607            // This is the binomial distribution B(64, 0.5), so chance of
608            // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
609            // weight > 44.
610            assert!((20..=44).contains(&weight));
611
612            for (i2, r2) in results.iter().enumerate() {
613                if i1 == i2 {
614                    continue;
615                }
616                let diff_weight = (r1 ^ r2).count_ones();
617                assert!(diff_weight >= 20);
618            }
619        }
620
621        // value-breakage test:
622        assert_eq!(results[0], 5029875928683246316);
623    }
624
625    // A stub RNG.
626    struct SomeRng;
627
628    impl RngCore for SomeRng {
629        fn next_u32(&mut self) -> u32 {
630            unimplemented!()
631        }
632        fn next_u64(&mut self) -> u64 {
633            unimplemented!()
634        }
635        fn fill_bytes(&mut self, _: &mut [u8]) {
636            unimplemented!()
637        }
638    }
639
640    impl CryptoRng for SomeRng {}
641
642    #[test]
643    fn dyn_rngcore_to_tryrngcore() {
644        // Illustrates the need for `+ ?Sized` bound in `impl<R: RngCore> TryRngCore for R`.
645
646        // A method in another crate taking a fallible RNG
647        fn third_party_api(_rng: &mut (impl TryRngCore + ?Sized)) -> bool {
648            true
649        }
650
651        // A method in our crate requiring an infallible RNG
652        fn my_api(rng: &mut dyn RngCore) -> bool {
653            // We want to call the method above
654            third_party_api(rng)
655        }
656
657        assert!(my_api(&mut SomeRng));
658    }
659
660    #[test]
661    fn dyn_cryptorng_to_trycryptorng() {
662        // Illustrates the need for `+ ?Sized` bound in `impl<R: CryptoRng> TryCryptoRng for R`.
663
664        // A method in another crate taking a fallible RNG
665        fn third_party_api(_rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
666            true
667        }
668
669        // A method in our crate requiring an infallible RNG
670        fn my_api(rng: &mut dyn CryptoRng) -> bool {
671            // We want to call the method above
672            third_party_api(rng)
673        }
674
675        assert!(my_api(&mut SomeRng));
676    }
677
678    #[test]
679    fn dyn_unwrap_mut_tryrngcore() {
680        // Illustrates the need for `+ ?Sized` bound in
681        // `impl<R: TryRngCore> RngCore for UnwrapMut<'_, R>`.
682
683        fn third_party_api(_rng: &mut impl RngCore) -> bool {
684            true
685        }
686
687        fn my_api(rng: &mut (impl TryRngCore + ?Sized)) -> bool {
688            let mut infallible_rng = rng.unwrap_mut();
689            third_party_api(&mut infallible_rng)
690        }
691
692        assert!(my_api(&mut SomeRng));
693    }
694
695    #[test]
696    fn dyn_unwrap_mut_trycryptorng() {
697        // Illustrates the need for `+ ?Sized` bound in
698        // `impl<R: TryCryptoRng> CryptoRng for UnwrapMut<'_, R>`.
699
700        fn third_party_api(_rng: &mut impl CryptoRng) -> bool {
701            true
702        }
703
704        fn my_api(rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
705            let mut infallible_rng = rng.unwrap_mut();
706            third_party_api(&mut infallible_rng)
707        }
708
709        assert!(my_api(&mut SomeRng));
710    }
711
712    #[test]
713    fn reborrow_unwrap_mut() {
714        struct FourRng;
715
716        impl TryRngCore for FourRng {
717            type Error = core::convert::Infallible;
718            fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
719                Ok(4)
720            }
721            fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
722                unimplemented!()
723            }
724            fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), Self::Error> {
725                unimplemented!()
726            }
727        }
728
729        let mut rng = FourRng;
730        let mut rng = rng.unwrap_mut();
731
732        assert_eq!(rng.next_u32(), 4);
733        {
734            let mut rng2 = rng.re();
735            assert_eq!(rng2.next_u32(), 4);
736            // Make sure rng2 is dropped.
737        }
738        assert_eq!(rng.next_u32(), 4);
739    }
740}