rand_core/
lib.rs

1// Copyright 2018 Developers of the Rand project.
2// Copyright 2017-2018 The Rust Project Developers.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10//! Random number generation traits
11//!
12//! This crate is mainly of interest to crates publishing implementations of
13//! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
14//! which re-exports the main traits and error types.
15//!
16//! [`RngCore`] is the core trait implemented by algorithmic pseudo-random number
17//! generators and external random-number sources.
18//!
19//! [`SeedableRng`] is an extension trait for construction from fixed seeds and
20//! other random number generators.
21//!
22//! The [`impls`] and [`le`] sub-modules include a few small functions to assist
23//! implementation of [`RngCore`].
24//!
25//! [`rand`]: https://docs.rs/rand
26
27#![doc(
28    html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
29    html_favicon_url = "https://www.rust-lang.org/favicon.ico",
30    html_root_url = "https://rust-random.github.io/rand/"
31)]
32#![deny(missing_docs)]
33#![deny(missing_debug_implementations)]
34#![doc(test(attr(allow(unused_variables), deny(warnings))))]
35#![cfg_attr(docsrs, feature(doc_auto_cfg))]
36#![no_std]
37
38#[cfg(feature = "std")]
39extern crate std;
40
41use core::{fmt, ops::DerefMut};
42
43pub mod block;
44pub mod impls;
45pub mod le;
46#[cfg(feature = "os_rng")]
47mod os;
48
49#[cfg(feature = "os_rng")]
50pub use os::{OsError, OsRng};
51
52/// Implementation-level interface for RNGs
53///
54/// This trait encapsulates the low-level functionality common to all
55/// generators, and is the "back end", to be implemented by generators.
56/// End users should normally use the [`rand::Rng`] trait
57/// which is automatically implemented for every type implementing `RngCore`.
58///
59/// Three different methods for generating random data are provided since the
60/// optimal implementation of each is dependent on the type of generator. There
61/// is no required relationship between the output of each; e.g. many
62/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
63/// values and drop any remaining unused bytes. The same can happen with the
64/// [`next_u32`] and [`next_u64`] methods, implementations may discard some
65/// random bits for efficiency.
66///
67/// Implementers should produce bits uniformly. Pathological RNGs (e.g. always
68/// returning the same value, or never setting certain bits) can break rejection
69/// sampling used by random distributions, and also break other RNGs when
70/// seeding them via [`SeedableRng::from_rng`].
71///
72/// Algorithmic generators implementing [`SeedableRng`] should normally have
73/// *portable, reproducible* output, i.e. fix Endianness when converting values
74/// to avoid platform differences, and avoid making any changes which affect
75/// output (except by communicating that the release has breaking changes).
76///
77/// Typically an RNG will implement only one of the methods available
78/// in this trait directly, then use the helper functions from the
79/// [`impls`] module to implement the other methods.
80///
81/// Note that implementors of [`RngCore`] also automatically implement
82/// the [`TryRngCore`] trait with the `Error` associated type being
83/// equal to [`Infallible`].
84///
85/// It is recommended that implementations also implement:
86///
87/// - `Debug` with a custom implementation which *does not* print any internal
88///   state (at least, [`CryptoRng`]s should not risk leaking state through
89///   `Debug`).
90/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
91///   support optional at the crate level in PRNG libs.
92/// - `Clone`, if possible.
93/// - *never* implement `Copy` (accidental copies may cause repeated values).
94/// - *do not* implement `Default` for pseudorandom generators, but instead
95///   implement [`SeedableRng`], to guide users towards proper seeding.
96///   External / hardware RNGs can choose to implement `Default`.
97/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
98///
99/// # Example
100///
101/// A simple example, obviously not generating very *random* output:
102///
103/// ```
104/// #![allow(dead_code)]
105/// use rand_core::{RngCore, impls};
106///
107/// struct CountingRng(u64);
108///
109/// impl RngCore for CountingRng {
110///     fn next_u32(&mut self) -> u32 {
111///         self.next_u64() as u32
112///     }
113///
114///     fn next_u64(&mut self) -> u64 {
115///         self.0 += 1;
116///         self.0
117///     }
118///
119///     fn fill_bytes(&mut self, dst: &mut [u8]) {
120///         impls::fill_bytes_via_next(self, dst)
121///     }
122/// }
123/// ```
124///
125/// [`rand::Rng`]: https://docs.rs/rand/latest/rand/trait.Rng.html
126/// [`fill_bytes`]: RngCore::fill_bytes
127/// [`next_u32`]: RngCore::next_u32
128/// [`next_u64`]: RngCore::next_u64
129/// [`Infallible`]: core::convert::Infallible
130pub trait RngCore {
131    /// Return the next random `u32`.
132    ///
133    /// RNGs must implement at least one method from this trait directly. In
134    /// the case this method is not implemented directly, it can be implemented
135    /// using `self.next_u64() as u32` or via [`impls::next_u32_via_fill`].
136    fn next_u32(&mut self) -> u32;
137
138    /// Return the next random `u64`.
139    ///
140    /// RNGs must implement at least one method from this trait directly. In
141    /// the case this method is not implemented directly, it can be implemented
142    /// via [`impls::next_u64_via_u32`] or via [`impls::next_u64_via_fill`].
143    fn next_u64(&mut self) -> u64;
144
145    /// Fill `dest` with random data.
146    ///
147    /// RNGs must implement at least one method from this trait directly. In
148    /// the case this method is not implemented directly, it can be implemented
149    /// via [`impls::fill_bytes_via_next`].
150    ///
151    /// This method should guarantee that `dest` is entirely filled
152    /// with new data, and may panic if this is impossible
153    /// (e.g. reading past the end of a file that is being used as the
154    /// source of randomness).
155    fn fill_bytes(&mut self, dst: &mut [u8]);
156}
157
158impl<T: DerefMut> RngCore for T
159where
160    T::Target: RngCore,
161{
162    #[inline]
163    fn next_u32(&mut self) -> u32 {
164        self.deref_mut().next_u32()
165    }
166
167    #[inline]
168    fn next_u64(&mut self) -> u64 {
169        self.deref_mut().next_u64()
170    }
171
172    #[inline]
173    fn fill_bytes(&mut self, dst: &mut [u8]) {
174        self.deref_mut().fill_bytes(dst);
175    }
176}
177
178/// A marker trait over [`RngCore`] for securely unpredictable RNGs
179///
180/// This marker trait indicates that the implementing generator is intended,
181/// when correctly seeded and protected from side-channel attacks such as a
182/// leaking of state, to be a cryptographically secure generator. This trait is
183/// provided as a tool to aid review of cryptographic code, but does not by
184/// itself guarantee suitability for cryptographic applications.
185///
186/// Implementors of `CryptoRng` automatically implement the [`TryCryptoRng`]
187/// trait.
188///
189/// Implementors of `CryptoRng` should only implement [`Default`] if the
190/// `default()` instances are themselves secure generators: for example if the
191/// implementing type is a stateless interface over a secure external generator
192/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
193///
194/// Formally, a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator)
195/// should satisfy an additional property over other generators: assuming that
196/// the generator has been appropriately seeded and has unknown state, then
197/// given the first *k* bits of an algorithm's output
198/// sequence, it should not be possible using polynomial-time algorithms to
199/// predict the next bit with probability significantly greater than 50%.
200///
201/// An optional property of CSPRNGs is backtracking resistance: if the CSPRNG's
202/// state is revealed, it will not be computationally-feasible to reconstruct
203/// prior output values. This property is not required by `CryptoRng`.
204pub trait CryptoRng: RngCore {}
205
206impl<T: DerefMut> CryptoRng for T where T::Target: CryptoRng {}
207
208/// A potentially fallible variant of [`RngCore`]
209///
210/// This trait is a generalization of [`RngCore`] to support potentially-
211/// fallible IO-based generators such as [`OsRng`].
212///
213/// All implementations of [`RngCore`] automatically support this `TryRngCore`
214/// trait, using [`Infallible`][core::convert::Infallible] as the associated
215/// `Error` type.
216///
217/// An implementation of this trait may be made compatible with code requiring
218/// an [`RngCore`] through [`TryRngCore::unwrap_err`]. The resulting RNG will
219/// panic in case the underlying fallible RNG yields an error.
220pub trait TryRngCore {
221    /// The type returned in the event of a RNG error.
222    type Error: fmt::Debug + fmt::Display;
223
224    /// Return the next random `u32`.
225    fn try_next_u32(&mut self) -> Result<u32, Self::Error>;
226    /// Return the next random `u64`.
227    fn try_next_u64(&mut self) -> Result<u64, Self::Error>;
228    /// Fill `dest` entirely with random data.
229    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error>;
230
231    /// Wrap RNG with the [`UnwrapErr`] wrapper.
232    fn unwrap_err(self) -> UnwrapErr<Self>
233    where
234        Self: Sized,
235    {
236        UnwrapErr(self)
237    }
238
239    /// Wrap RNG with the [`UnwrapMut`] wrapper.
240    fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self> {
241        UnwrapMut(self)
242    }
243
244    /// Convert an [`RngCore`] to a [`RngReadAdapter`].
245    #[cfg(feature = "std")]
246    fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
247    where
248        Self: Sized,
249    {
250        RngReadAdapter { inner: self }
251    }
252}
253
254// Note that, unfortunately, this blanket impl prevents us from implementing
255// `TryRngCore` for types which can be dereferenced to `TryRngCore`, i.e. `TryRngCore`
256// will not be automatically implemented for `&mut R`, `Box<R>`, etc.
257impl<R: RngCore + ?Sized> TryRngCore for R {
258    type Error = core::convert::Infallible;
259
260    #[inline]
261    fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
262        Ok(self.next_u32())
263    }
264
265    #[inline]
266    fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
267        Ok(self.next_u64())
268    }
269
270    #[inline]
271    fn try_fill_bytes(&mut self, dst: &mut [u8]) -> Result<(), Self::Error> {
272        self.fill_bytes(dst);
273        Ok(())
274    }
275}
276
277/// A marker trait over [`TryRngCore`] for securely unpredictable RNGs
278///
279/// This trait is like [`CryptoRng`] but for the trait [`TryRngCore`].
280///
281/// This marker trait indicates that the implementing generator is intended,
282/// when correctly seeded and protected from side-channel attacks such as a
283/// leaking of state, to be a cryptographically secure generator. This trait is
284/// provided as a tool to aid review of cryptographic code, but does not by
285/// itself guarantee suitability for cryptographic applications.
286///
287/// Implementors of `TryCryptoRng` should only implement [`Default`] if the
288/// `default()` instances are themselves secure generators: for example if the
289/// implementing type is a stateless interface over a secure external generator
290/// (like [`OsRng`]) or if the `default()` instance uses a strong, fresh seed.
291pub trait TryCryptoRng: TryRngCore {}
292
293impl<R: CryptoRng + ?Sized> TryCryptoRng for R {}
294
295/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
296/// by panicking on potential errors.
297#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, Hash)]
298pub struct UnwrapErr<R: TryRngCore>(pub R);
299
300impl<R: TryRngCore> RngCore for UnwrapErr<R> {
301    #[inline]
302    fn next_u32(&mut self) -> u32 {
303        self.0.try_next_u32().unwrap()
304    }
305
306    #[inline]
307    fn next_u64(&mut self) -> u64 {
308        self.0.try_next_u64().unwrap()
309    }
310
311    #[inline]
312    fn fill_bytes(&mut self, dst: &mut [u8]) {
313        self.0.try_fill_bytes(dst).unwrap()
314    }
315}
316
317impl<R: TryCryptoRng> CryptoRng for UnwrapErr<R> {}
318
319/// Wrapper around [`TryRngCore`] implementation which implements [`RngCore`]
320/// by panicking on potential errors.
321#[derive(Debug, Eq, PartialEq, Hash)]
322pub struct UnwrapMut<'r, R: TryRngCore + ?Sized>(pub &'r mut R);
323
324impl<'r, R: TryRngCore + ?Sized> UnwrapMut<'r, R> {
325    /// Reborrow with a new lifetime
326    ///
327    /// Rust allows references like `&T` or `&mut T` to be "reborrowed" through
328    /// coercion: essentially, the pointer is copied under a new, shorter, lifetime.
329    /// Until rfcs#1403 lands, reborrows on user types require a method call.
330    #[inline(always)]
331    pub fn re<'b>(&'b mut self) -> UnwrapMut<'b, R>
332    where
333        'r: 'b,
334    {
335        UnwrapMut(self.0)
336    }
337}
338
339impl<R: TryRngCore + ?Sized> RngCore for UnwrapMut<'_, R> {
340    #[inline]
341    fn next_u32(&mut self) -> u32 {
342        self.0.try_next_u32().unwrap()
343    }
344
345    #[inline]
346    fn next_u64(&mut self) -> u64 {
347        self.0.try_next_u64().unwrap()
348    }
349
350    #[inline]
351    fn fill_bytes(&mut self, dst: &mut [u8]) {
352        self.0.try_fill_bytes(dst).unwrap()
353    }
354}
355
356impl<R: TryCryptoRng + ?Sized> CryptoRng for UnwrapMut<'_, R> {}
357
358/// A random number generator that can be explicitly seeded.
359///
360/// This trait encapsulates the low-level functionality common to all
361/// pseudo-random number generators (PRNGs, or algorithmic generators).
362///
363/// A generator implementing `SeedableRng` will usually be deterministic, but
364/// beware that portability and reproducibility of results **is not implied**.
365/// Refer to documentation of the generator, noting that generators named after
366/// a specific algorithm are usually tested for reproducibility against a
367/// reference vector, while `SmallRng` and `StdRng` specifically opt out of
368/// reproducibility guarantees.
369///
370/// [`rand`]: https://docs.rs/rand
371pub trait SeedableRng: Sized {
372    /// Seed type, which is restricted to types mutably-dereferenceable as `u8`
373    /// arrays (we recommend `[u8; N]` for some `N`).
374    ///
375    /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
376    /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
377    /// partially overlapping periods.
378    ///
379    /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
380    ///
381    ///
382    /// # Implementing `SeedableRng` for RNGs with large seeds
383    ///
384    /// Note that [`Default`] is not implemented for large arrays `[u8; N]` with
385    /// `N` > 32. To be able to implement the traits required by `SeedableRng`
386    /// for RNGs with such large seeds, the newtype pattern can be used:
387    ///
388    /// ```
389    /// use rand_core::SeedableRng;
390    ///
391    /// const N: usize = 64;
392    /// #[derive(Clone)]
393    /// pub struct MyRngSeed(pub [u8; N]);
394    /// # #[allow(dead_code)]
395    /// pub struct MyRng(MyRngSeed);
396    ///
397    /// impl Default for MyRngSeed {
398    ///     fn default() -> MyRngSeed {
399    ///         MyRngSeed([0; N])
400    ///     }
401    /// }
402    ///
403    /// impl AsRef<[u8]> for MyRngSeed {
404    ///     fn as_ref(&self) -> &[u8] {
405    ///         &self.0
406    ///     }
407    /// }
408    ///
409    /// impl AsMut<[u8]> for MyRngSeed {
410    ///     fn as_mut(&mut self) -> &mut [u8] {
411    ///         &mut self.0
412    ///     }
413    /// }
414    ///
415    /// impl SeedableRng for MyRng {
416    ///     type Seed = MyRngSeed;
417    ///
418    ///     fn from_seed(seed: MyRngSeed) -> MyRng {
419    ///         MyRng(seed)
420    ///     }
421    /// }
422    /// ```
423    type Seed: Clone + Default + AsRef<[u8]> + AsMut<[u8]>;
424
425    /// Create a new PRNG using the given seed.
426    ///
427    /// PRNG implementations are allowed to assume that bits in the seed are
428    /// well distributed. That means usually that the number of one and zero
429    /// bits are roughly equal, and values like 0, 1 and (size - 1) are unlikely.
430    /// Note that many non-cryptographic PRNGs will show poor quality output
431    /// if this is not adhered to. If you wish to seed from simple numbers, use
432    /// `seed_from_u64` instead.
433    ///
434    /// All PRNG implementations should be reproducible unless otherwise noted:
435    /// given a fixed `seed`, the same sequence of output should be produced
436    /// on all runs, library versions and architectures (e.g. check endianness).
437    /// Any "value-breaking" changes to the generator should require bumping at
438    /// least the minor version and documentation of the change.
439    ///
440    /// It is not required that this function yield the same state as a
441    /// reference implementation of the PRNG given equivalent seed; if necessary
442    /// another constructor replicating behaviour from a reference
443    /// implementation can be added.
444    ///
445    /// PRNG implementations should make sure `from_seed` never panics. In the
446    /// case that some special values (like an all zero seed) are not viable
447    /// seeds it is preferable to map these to alternative constant value(s),
448    /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
449    /// seed"). This is assuming only a small number of values must be rejected.
450    fn from_seed(seed: Self::Seed) -> Self;
451
452    /// Create a new PRNG using a `u64` seed.
453    ///
454    /// This is a convenience-wrapper around `from_seed` to allow construction
455    /// of any `SeedableRng` from a simple `u64` value. It is designed such that
456    /// low Hamming Weight numbers like 0 and 1 can be used and should still
457    /// result in good, independent seeds to the PRNG which is returned.
458    ///
459    /// This **is not suitable for cryptography**, as should be clear given that
460    /// the input size is only 64 bits.
461    ///
462    /// Implementations for PRNGs *may* provide their own implementations of
463    /// this function, but the default implementation should be good enough for
464    /// all purposes. *Changing* the implementation of this function should be
465    /// considered a value-breaking change.
466    fn seed_from_u64(mut state: u64) -> Self {
467        // We use PCG32 to generate a u32 sequence, and copy to the seed
468        fn pcg32(state: &mut u64) -> [u8; 4] {
469            const MUL: u64 = 6364136223846793005;
470            const INC: u64 = 11634580027462260723;
471
472            // We advance the state first (to get away from the input value,
473            // in case it has low Hamming Weight).
474            *state = state.wrapping_mul(MUL).wrapping_add(INC);
475            let state = *state;
476
477            // Use PCG output function with to_le to generate x:
478            let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
479            let rot = (state >> 59) as u32;
480            let x = xorshifted.rotate_right(rot);
481            x.to_le_bytes()
482        }
483
484        let mut seed = Self::Seed::default();
485        let mut iter = seed.as_mut().chunks_exact_mut(4);
486        for chunk in &mut iter {
487            chunk.copy_from_slice(&pcg32(&mut state));
488        }
489        let rem = iter.into_remainder();
490        if !rem.is_empty() {
491            rem.copy_from_slice(&pcg32(&mut state)[..rem.len()]);
492        }
493
494        Self::from_seed(seed)
495    }
496
497    /// Create a new PRNG seeded from an infallible `Rng`.
498    ///
499    /// This may be useful when needing to rapidly seed many PRNGs from a master
500    /// PRNG, and to allow forking of PRNGs. It may be considered deterministic.
501    ///
502    /// The master PRNG should be at least as high quality as the child PRNGs.
503    /// When seeding non-cryptographic child PRNGs, we recommend using a
504    /// different algorithm for the master PRNG (ideally a CSPRNG) to avoid
505    /// correlations between the child PRNGs. If this is not possible (e.g.
506    /// forking using small non-crypto PRNGs) ensure that your PRNG has a good
507    /// mixing function on the output or consider use of a hash function with
508    /// `from_seed`.
509    ///
510    /// Note that seeding `XorShiftRng` from another `XorShiftRng` provides an
511    /// extreme example of what can go wrong: the new PRNG will be a clone
512    /// of the parent.
513    ///
514    /// PRNG implementations are allowed to assume that a good RNG is provided
515    /// for seeding, and that it is cryptographically secure when appropriate.
516    /// As of `rand` 0.7 / `rand_core` 0.5, implementations overriding this
517    /// method should ensure the implementation satisfies reproducibility
518    /// (in prior versions this was not required).
519    ///
520    /// [`rand`]: https://docs.rs/rand
521    fn from_rng(rng: &mut impl RngCore) -> Self {
522        let mut seed = Self::Seed::default();
523        rng.fill_bytes(seed.as_mut());
524        Self::from_seed(seed)
525    }
526
527    /// Create a new PRNG seeded from a potentially fallible `Rng`.
528    ///
529    /// See [`from_rng`][SeedableRng::from_rng] docs for more information.
530    fn try_from_rng<R: TryRngCore>(rng: &mut R) -> Result<Self, R::Error> {
531        let mut seed = Self::Seed::default();
532        rng.try_fill_bytes(seed.as_mut())?;
533        Ok(Self::from_seed(seed))
534    }
535
536    /// Creates a new instance of the RNG seeded via [`getrandom`].
537    ///
538    /// This method is the recommended way to construct non-deterministic PRNGs
539    /// since it is convenient and secure.
540    ///
541    /// Note that this method may panic on (extremely unlikely) [`getrandom`] errors.
542    /// If it's not desirable, use the [`try_from_os_rng`] method instead.
543    ///
544    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
545    /// issue, one may prefer to seed from a local PRNG, e.g.
546    /// `from_rng(rand::rng()).unwrap()`.
547    ///
548    /// # Panics
549    ///
550    /// If [`getrandom`] is unable to provide secure entropy this method will panic.
551    ///
552    /// [`getrandom`]: https://docs.rs/getrandom
553    /// [`try_from_os_rng`]: SeedableRng::try_from_os_rng
554    #[cfg(feature = "os_rng")]
555    fn from_os_rng() -> Self {
556        match Self::try_from_os_rng() {
557            Ok(res) => res,
558            Err(err) => panic!("from_os_rng failed: {}", err),
559        }
560    }
561
562    /// Creates a new instance of the RNG seeded via [`getrandom`] without unwrapping
563    /// potential [`getrandom`] errors.
564    ///
565    /// In case the overhead of using [`getrandom`] to seed *many* PRNGs is an
566    /// issue, one may prefer to seed from a local PRNG, e.g.
567    /// `from_rng(&mut rand::rng()).unwrap()`.
568    ///
569    /// [`getrandom`]: https://docs.rs/getrandom
570    #[cfg(feature = "os_rng")]
571    fn try_from_os_rng() -> Result<Self, getrandom::Error> {
572        let mut seed = Self::Seed::default();
573        getrandom::fill(seed.as_mut())?;
574        let res = Self::from_seed(seed);
575        Ok(res)
576    }
577}
578
579/// Adapter that enables reading through a [`io::Read`](std::io::Read) from a [`RngCore`].
580///
581/// # Examples
582///
583/// ```no_run
584/// # use std::{io, io::Read};
585/// # use std::fs::File;
586/// # use rand_core::{OsRng, TryRngCore};
587///
588/// io::copy(&mut OsRng.read_adapter().take(100), &mut File::create("/tmp/random.bytes").unwrap()).unwrap();
589/// ```
590#[cfg(feature = "std")]
591pub struct RngReadAdapter<'a, R: TryRngCore + ?Sized> {
592    inner: &'a mut R,
593}
594
595#[cfg(feature = "std")]
596impl<R: TryRngCore + ?Sized> std::io::Read for RngReadAdapter<'_, R> {
597    #[inline]
598    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
599        self.inner.try_fill_bytes(buf).map_err(|err| {
600            std::io::Error::new(std::io::ErrorKind::Other, std::format!("RNG error: {err}"))
601        })?;
602        Ok(buf.len())
603    }
604}
605
606#[cfg(feature = "std")]
607impl<R: TryRngCore + ?Sized> std::fmt::Debug for RngReadAdapter<'_, R> {
608    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
609        f.debug_struct("ReadAdapter").finish()
610    }
611}
612
613#[cfg(test)]
614mod test {
615    use super::*;
616
617    #[test]
618    fn test_seed_from_u64() {
619        struct SeedableNum(u64);
620        impl SeedableRng for SeedableNum {
621            type Seed = [u8; 8];
622
623            fn from_seed(seed: Self::Seed) -> Self {
624                let mut x = [0u64; 1];
625                le::read_u64_into(&seed, &mut x);
626                SeedableNum(x[0])
627            }
628        }
629
630        const N: usize = 8;
631        const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
632        let mut results = [0u64; N];
633        for (i, seed) in SEEDS.iter().enumerate() {
634            let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
635            results[i] = x;
636        }
637
638        for (i1, r1) in results.iter().enumerate() {
639            let weight = r1.count_ones();
640            // This is the binomial distribution B(64, 0.5), so chance of
641            // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
642            // weight > 44.
643            assert!((20..=44).contains(&weight));
644
645            for (i2, r2) in results.iter().enumerate() {
646                if i1 == i2 {
647                    continue;
648                }
649                let diff_weight = (r1 ^ r2).count_ones();
650                assert!(diff_weight >= 20);
651            }
652        }
653
654        // value-breakage test:
655        assert_eq!(results[0], 5029875928683246316);
656    }
657
658    // A stub RNG.
659    struct SomeRng;
660
661    impl RngCore for SomeRng {
662        fn next_u32(&mut self) -> u32 {
663            unimplemented!()
664        }
665        fn next_u64(&mut self) -> u64 {
666            unimplemented!()
667        }
668        fn fill_bytes(&mut self, _: &mut [u8]) {
669            unimplemented!()
670        }
671    }
672
673    impl CryptoRng for SomeRng {}
674
675    #[test]
676    fn dyn_rngcore_to_tryrngcore() {
677        // Illustrates the need for `+ ?Sized` bound in `impl<R: RngCore> TryRngCore for R`.
678
679        // A method in another crate taking a fallible RNG
680        fn third_party_api(_rng: &mut (impl TryRngCore + ?Sized)) -> bool {
681            true
682        }
683
684        // A method in our crate requiring an infallible RNG
685        fn my_api(rng: &mut dyn RngCore) -> bool {
686            // We want to call the method above
687            third_party_api(rng)
688        }
689
690        assert!(my_api(&mut SomeRng));
691    }
692
693    #[test]
694    fn dyn_cryptorng_to_trycryptorng() {
695        // Illustrates the need for `+ ?Sized` bound in `impl<R: CryptoRng> TryCryptoRng for R`.
696
697        // A method in another crate taking a fallible RNG
698        fn third_party_api(_rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
699            true
700        }
701
702        // A method in our crate requiring an infallible RNG
703        fn my_api(rng: &mut dyn CryptoRng) -> bool {
704            // We want to call the method above
705            third_party_api(rng)
706        }
707
708        assert!(my_api(&mut SomeRng));
709    }
710
711    #[test]
712    fn dyn_unwrap_mut_tryrngcore() {
713        // Illustrates the need for `+ ?Sized` bound in
714        // `impl<R: TryRngCore> RngCore for UnwrapMut<'_, R>`.
715
716        fn third_party_api(_rng: &mut impl RngCore) -> bool {
717            true
718        }
719
720        fn my_api(rng: &mut (impl TryRngCore + ?Sized)) -> bool {
721            let mut infallible_rng = rng.unwrap_mut();
722            third_party_api(&mut infallible_rng)
723        }
724
725        assert!(my_api(&mut SomeRng));
726    }
727
728    #[test]
729    fn dyn_unwrap_mut_trycryptorng() {
730        // Illustrates the need for `+ ?Sized` bound in
731        // `impl<R: TryCryptoRng> CryptoRng for UnwrapMut<'_, R>`.
732
733        fn third_party_api(_rng: &mut impl CryptoRng) -> bool {
734            true
735        }
736
737        fn my_api(rng: &mut (impl TryCryptoRng + ?Sized)) -> bool {
738            let mut infallible_rng = rng.unwrap_mut();
739            third_party_api(&mut infallible_rng)
740        }
741
742        assert!(my_api(&mut SomeRng));
743    }
744
745    #[test]
746    fn reborrow_unwrap_mut() {
747        struct FourRng;
748
749        impl TryRngCore for FourRng {
750            type Error = core::convert::Infallible;
751            fn try_next_u32(&mut self) -> Result<u32, Self::Error> {
752                Ok(4)
753            }
754            fn try_next_u64(&mut self) -> Result<u64, Self::Error> {
755                unimplemented!()
756            }
757            fn try_fill_bytes(&mut self, _: &mut [u8]) -> Result<(), Self::Error> {
758                unimplemented!()
759            }
760        }
761
762        let mut rng = FourRng;
763        let mut rng = rng.unwrap_mut();
764
765        assert_eq!(rng.next_u32(), 4);
766        let mut rng2 = rng.re();
767        assert_eq!(rng2.next_u32(), 4);
768        drop(rng2);
769        assert_eq!(rng.next_u32(), 4);
770    }
771}