1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
// Copyright 2018-2024 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! `IteratorRandom`

use super::coin_flipper::CoinFlipper;
use super::gen_index;
#[allow(unused)]
use super::IndexedRandom;
use crate::Rng;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;

/// Extension trait on iterators, providing random sampling methods.
///
/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
/// and provides methods for
/// choosing one or more elements. You must `use` this trait:
///
/// ```
/// use rand::seq::IteratorRandom;
///
/// let mut rng = rand::thread_rng();
///
/// let faces = "😀😎😐😕😠😢";
/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
/// ```
/// Example output (non-deterministic):
/// ```none
/// I am 😀!
/// ```
pub trait IteratorRandom: Iterator + Sized {
    /// Uniformly sample one element
    ///
    /// Assuming that the [`Iterator::size_hint`] is correct, this method
    /// returns one uniformly-sampled random element of the slice, or `None`
    /// only if the slice is empty. Incorrect bounds on the `size_hint` may
    /// cause this method to incorrectly return `None` if fewer elements than
    /// the advertised `lower` bound are present and may prevent sampling of
    /// elements beyond an advertised `upper` bound (i.e. incorrect `size_hint`
    /// is memory-safe, but may result in unexpected `None` result and
    /// non-uniform distribution).
    ///
    /// With an accurate [`Iterator::size_hint`] and where [`Iterator::nth`] is
    /// a constant-time operation, this method can offer `O(1)` performance.
    /// Where no size hint is
    /// available, complexity is `O(n)` where `n` is the iterator length.
    /// Partial hints (where `lower > 0`) also improve performance.
    ///
    /// Note further that [`Iterator::size_hint`] may affect the number of RNG
    /// samples used as well as the result (while remaining uniform sampling).
    /// Consider instead using [`IteratorRandom::choose_stable`] to avoid
    /// [`Iterator`] combinators which only change size hints from affecting the
    /// results.
    fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
    where
        R: Rng + ?Sized,
    {
        let (mut lower, mut upper) = self.size_hint();
        let mut result = None;

        // Handling for this condition outside the loop allows the optimizer to eliminate the loop
        // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
        // seq_iter_choose_from_1000.
        if upper == Some(lower) {
            return match lower {
                0 => None,
                1 => self.next(),
                _ => self.nth(gen_index(rng, lower)),
            };
        }

        let mut coin_flipper = CoinFlipper::new(rng);
        let mut consumed = 0;

        // Continue until the iterator is exhausted
        loop {
            if lower > 1 {
                let ix = gen_index(coin_flipper.rng, lower + consumed);
                let skip = if ix < lower {
                    result = self.nth(ix);
                    lower - (ix + 1)
                } else {
                    lower
                };
                if upper == Some(lower) {
                    return result;
                }
                consumed += lower;
                if skip > 0 {
                    self.nth(skip - 1);
                }
            } else {
                let elem = self.next();
                if elem.is_none() {
                    return result;
                }
                consumed += 1;
                if coin_flipper.gen_ratio_one_over(consumed) {
                    result = elem;
                }
            }

            let hint = self.size_hint();
            lower = hint.0;
            upper = hint.1;
        }
    }

    /// Uniformly sample one element (stable)
    ///
    /// This method is very similar to [`choose`] except that the result
    /// only depends on the length of the iterator and the values produced by
    /// `rng`. Notably for any iterator of a given length this will make the
    /// same requests to `rng` and if the same sequence of values are produced
    /// the same index will be selected from `self`. This may be useful if you
    /// need consistent results no matter what type of iterator you are working
    /// with. If you do not need this stability prefer [`choose`].
    ///
    /// Note that this method still uses [`Iterator::size_hint`] to skip
    /// constructing elements where possible, however the selection and `rng`
    /// calls are the same in the face of this optimization. If you want to
    /// force every element to be created regardless call `.inspect(|e| ())`.
    ///
    /// [`choose`]: IteratorRandom::choose
    fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
    where
        R: Rng + ?Sized,
    {
        let mut consumed = 0;
        let mut result = None;
        let mut coin_flipper = CoinFlipper::new(rng);

        loop {
            // Currently the only way to skip elements is `nth()`. So we need to
            // store what index to access next here.
            // This should be replaced by `advance_by()` once it is stable:
            // https://github.com/rust-lang/rust/issues/77404
            let mut next = 0;

            let (lower, _) = self.size_hint();
            if lower >= 2 {
                let highest_selected = (0..lower)
                    .filter(|ix| coin_flipper.gen_ratio_one_over(consumed + ix + 1))
                    .last();

                consumed += lower;
                next = lower;

                if let Some(ix) = highest_selected {
                    result = self.nth(ix);
                    next -= ix + 1;
                    debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
                }
            }

            let elem = self.nth(next);
            if elem.is_none() {
                return result;
            }

            if coin_flipper.gen_ratio_one_over(consumed + 1) {
                result = elem;
            }
            consumed += 1;
        }
    }

    /// Uniformly sample `amount` distinct elements into a buffer
    ///
    /// Collects values at random from the iterator into a supplied buffer
    /// until that buffer is filled.
    ///
    /// Although the elements are selected randomly, the order of elements in
    /// the buffer is neither stable nor fully random. If random ordering is
    /// desired, shuffle the result.
    ///
    /// Returns the number of elements added to the buffer. This equals the length
    /// of the buffer unless the iterator contains insufficient elements, in which
    /// case this equals the number of elements available.
    ///
    /// Complexity is `O(n)` where `n` is the length of the iterator.
    /// For slices, prefer [`IndexedRandom::choose_multiple`].
    fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
    where
        R: Rng + ?Sized,
    {
        let amount = buf.len();
        let mut len = 0;
        while len < amount {
            if let Some(elem) = self.next() {
                buf[len] = elem;
                len += 1;
            } else {
                // Iterator exhausted; stop early
                return len;
            }
        }

        // Continue, since the iterator was not exhausted
        for (i, elem) in self.enumerate() {
            let k = gen_index(rng, i + 1 + amount);
            if let Some(slot) = buf.get_mut(k) {
                *slot = elem;
            }
        }
        len
    }

    /// Uniformly sample `amount` distinct elements into a [`Vec`]
    ///
    /// This is equivalent to `choose_multiple_fill` except for the result type.
    ///
    /// Although the elements are selected randomly, the order of elements in
    /// the buffer is neither stable nor fully random. If random ordering is
    /// desired, shuffle the result.
    ///
    /// The length of the returned vector equals `amount` unless the iterator
    /// contains insufficient elements, in which case it equals the number of
    /// elements available.
    ///
    /// Complexity is `O(n)` where `n` is the length of the iterator.
    /// For slices, prefer [`IndexedRandom::choose_multiple`].
    #[cfg(feature = "alloc")]
    fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
    where
        R: Rng + ?Sized,
    {
        let mut reservoir = Vec::with_capacity(amount);
        reservoir.extend(self.by_ref().take(amount));

        // Continue unless the iterator was exhausted
        //
        // note: this prevents iterators that "restart" from causing problems.
        // If the iterator stops once, then so do we.
        if reservoir.len() == amount {
            for (i, elem) in self.enumerate() {
                let k = gen_index(rng, i + 1 + amount);
                if let Some(slot) = reservoir.get_mut(k) {
                    *slot = elem;
                }
            }
        } else {
            // Don't hang onto extra memory. There is a corner case where
            // `amount` was much less than `self.len()`.
            reservoir.shrink_to_fit();
        }
        reservoir
    }
}

impl<I> IteratorRandom for I where I: Iterator + Sized {}

#[cfg(test)]
mod test {
    use super::*;
    #[cfg(all(feature = "alloc", not(feature = "std")))]
    use alloc::vec::Vec;

    #[derive(Clone)]
    struct UnhintedIterator<I: Iterator + Clone> {
        iter: I,
    }
    impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            self.iter.next()
        }
    }

    #[derive(Clone)]
    struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
        iter: I,
        chunk_remaining: usize,
        chunk_size: usize,
        hint_total_size: bool,
    }
    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            if self.chunk_remaining == 0 {
                self.chunk_remaining = core::cmp::min(self.chunk_size, self.iter.len());
            }
            self.chunk_remaining = self.chunk_remaining.saturating_sub(1);

            self.iter.next()
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (
                self.chunk_remaining,
                if self.hint_total_size {
                    Some(self.iter.len())
                } else {
                    None
                },
            )
        }
    }

    #[derive(Clone)]
    struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
        iter: I,
        window_size: usize,
        hint_total_size: bool,
    }
    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            self.iter.next()
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (
                core::cmp::min(self.iter.len(), self.window_size),
                if self.hint_total_size {
                    Some(self.iter.len())
                } else {
                    None
                },
            )
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_iterator_choose() {
        let r = &mut crate::test::rng(109);
        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
            let mut chosen = [0i32; 9];
            for _ in 0..1000 {
                let picked = iter.clone().choose(r).unwrap();
                chosen[picked] += 1;
            }
            for count in chosen.iter() {
                // Samples should follow Binomial(1000, 1/9)
                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
                // Note: have seen 153, which is unlikely but not impossible.
                assert!(
                    72 < *count && *count < 154,
                    "count not close to 1000/9: {}",
                    count
                );
            }
        }

        test_iter(r, 0..9);
        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
        #[cfg(feature = "alloc")]
        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
        test_iter(r, UnhintedIterator { iter: 0..9 });
        test_iter(
            r,
            ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: false,
            },
        );
        test_iter(
            r,
            ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: true,
            },
        );
        test_iter(
            r,
            WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: false,
            },
        );
        test_iter(
            r,
            WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: true,
            },
        );

        assert_eq!((0..0).choose(r), None);
        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_iterator_choose_stable() {
        let r = &mut crate::test::rng(109);
        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
            let mut chosen = [0i32; 9];
            for _ in 0..1000 {
                let picked = iter.clone().choose_stable(r).unwrap();
                chosen[picked] += 1;
            }
            for count in chosen.iter() {
                // Samples should follow Binomial(1000, 1/9)
                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
                // Note: have seen 153, which is unlikely but not impossible.
                assert!(
                    72 < *count && *count < 154,
                    "count not close to 1000/9: {}",
                    count
                );
            }
        }

        test_iter(r, 0..9);
        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
        #[cfg(feature = "alloc")]
        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
        test_iter(r, UnhintedIterator { iter: 0..9 });
        test_iter(
            r,
            ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: false,
            },
        );
        test_iter(
            r,
            ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: true,
            },
        );
        test_iter(
            r,
            WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: false,
            },
        );
        test_iter(
            r,
            WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: true,
            },
        );

        assert_eq!((0..0).choose(r), None);
        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_iterator_choose_stable_stability() {
        fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
            let r = &mut crate::test::rng(109);
            let mut chosen = [0i32; 9];
            for _ in 0..1000 {
                let picked = iter.clone().choose_stable(r).unwrap();
                chosen[picked] += 1;
            }
            chosen
        }

        let reference = test_iter(0..9);
        assert_eq!(
            test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()),
            reference
        );

        #[cfg(feature = "alloc")]
        assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
        assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
        assert_eq!(
            test_iter(ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: false,
            }),
            reference
        );
        assert_eq!(
            test_iter(ChunkHintedIterator {
                iter: 0..9,
                chunk_size: 4,
                chunk_remaining: 4,
                hint_total_size: true,
            }),
            reference
        );
        assert_eq!(
            test_iter(WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: false,
            }),
            reference
        );
        assert_eq!(
            test_iter(WindowHintedIterator {
                iter: 0..9,
                window_size: 2,
                hint_total_size: true,
            }),
            reference
        );
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn test_sample_iter() {
        let min_val = 1;
        let max_val = 100;

        let mut r = crate::test::rng(401);
        let vals = (min_val..max_val).collect::<Vec<i32>>();
        let small_sample = vals.iter().choose_multiple(&mut r, 5);
        let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);

        assert_eq!(small_sample.len(), 5);
        assert_eq!(large_sample.len(), vals.len());
        // no randomization happens when amount >= len
        assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());

        assert!(small_sample
            .iter()
            .all(|e| { **e >= min_val && **e <= max_val }));
    }

    #[test]
    fn value_stability_choose() {
        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
            let mut rng = crate::test::rng(411);
            iter.choose(&mut rng)
        }

        assert_eq!(choose([].iter().cloned()), None);
        assert_eq!(choose(0..100), Some(33));
        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(27));
        assert_eq!(
            choose(ChunkHintedIterator {
                iter: 0..100,
                chunk_size: 32,
                chunk_remaining: 32,
                hint_total_size: false,
            }),
            Some(91)
        );
        assert_eq!(
            choose(ChunkHintedIterator {
                iter: 0..100,
                chunk_size: 32,
                chunk_remaining: 32,
                hint_total_size: true,
            }),
            Some(91)
        );
        assert_eq!(
            choose(WindowHintedIterator {
                iter: 0..100,
                window_size: 32,
                hint_total_size: false,
            }),
            Some(34)
        );
        assert_eq!(
            choose(WindowHintedIterator {
                iter: 0..100,
                window_size: 32,
                hint_total_size: true,
            }),
            Some(34)
        );
    }

    #[test]
    fn value_stability_choose_stable() {
        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
            let mut rng = crate::test::rng(411);
            iter.choose_stable(&mut rng)
        }

        assert_eq!(choose([].iter().cloned()), None);
        assert_eq!(choose(0..100), Some(27));
        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(27));
        assert_eq!(
            choose(ChunkHintedIterator {
                iter: 0..100,
                chunk_size: 32,
                chunk_remaining: 32,
                hint_total_size: false,
            }),
            Some(27)
        );
        assert_eq!(
            choose(ChunkHintedIterator {
                iter: 0..100,
                chunk_size: 32,
                chunk_remaining: 32,
                hint_total_size: true,
            }),
            Some(27)
        );
        assert_eq!(
            choose(WindowHintedIterator {
                iter: 0..100,
                window_size: 32,
                hint_total_size: false,
            }),
            Some(27)
        );
        assert_eq!(
            choose(WindowHintedIterator {
                iter: 0..100,
                window_size: 32,
                hint_total_size: true,
            }),
            Some(27)
        );
    }

    #[test]
    fn value_stability_choose_multiple() {
        fn do_test<I: Clone + Iterator<Item = u32>>(iter: I, v: &[u32]) {
            let mut rng = crate::test::rng(412);
            let mut buf = [0u32; 8];
            assert_eq!(
                iter.clone().choose_multiple_fill(&mut rng, &mut buf),
                v.len()
            );
            assert_eq!(&buf[0..v.len()], v);

            #[cfg(feature = "alloc")]
            {
                let mut rng = crate::test::rng(412);
                assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
            }
        }

        do_test(0..4, &[0, 1, 2, 3]);
        do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
        do_test(0..100, &[77, 95, 38, 23, 25, 8, 58, 40]);
    }
}