rand/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! Rand provides utilities to generate random numbers, to convert them to
//! useful types and distributions, and some randomness-related algorithms.
//!
//! # Quick Start
//!
//! ```
//! // The prelude import enables methods we use below, specifically
//! // Rng::random, Rng::sample, SliceRandom::shuffle and IndexedRandom::choose.
//! use rand::prelude::*;
//!
//! // Get an RNG:
//! let mut rng = rand::rng();
//!
//! // Try printing a random unicode code point (probably a bad idea)!
//! println!("char: '{}'", rng.random::<char>());
//! // Try printing a random alphanumeric value instead!
//! println!("alpha: '{}'", rng.sample(rand::distr::Alphanumeric) as char);
//!
//! // Generate and shuffle a sequence:
//! let mut nums: Vec<i32> = (1..100).collect();
//! nums.shuffle(&mut rng);
//! // And take a random pick (yes, we didn't need to shuffle first!):
//! let _ = nums.choose(&mut rng);
//! ```
//!
//! # The Book
//!
//! For the user guide and further documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![no_std]
#![cfg_attr(feature = "simd_support", feature(portable_simd))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![allow(
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord,
clippy::nonminimal_bool
)]
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[allow(unused)]
macro_rules! trace { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::trace!($($x)*)
}
) }
#[allow(unused)]
macro_rules! debug { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::debug!($($x)*)
}
) }
#[allow(unused)]
macro_rules! info { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::info!($($x)*)
}
) }
#[allow(unused)]
macro_rules! warn { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::warn!($($x)*)
}
) }
#[allow(unused)]
macro_rules! error { ($($x:tt)*) => (
#[cfg(feature = "log")] {
log::error!($($x)*)
}
) }
// Re-exports from rand_core
pub use rand_core::{CryptoRng, RngCore, SeedableRng, TryCryptoRng, TryRngCore};
// Public modules
pub mod distr;
pub mod prelude;
mod rng;
pub mod rngs;
pub mod seq;
// Public exports
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
pub use crate::rngs::thread::rng;
/// Access the thread-local generator
///
/// Use [`rand::rng()`](rng()) instead.
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[deprecated(since = "0.9.0", note = "renamed to `rng`")]
#[inline]
pub fn thread_rng() -> crate::rngs::ThreadRng {
rng()
}
pub use rng::{Fill, Rng};
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
use crate::distr::{Distribution, Standard};
/// Generate a random value using the thread-local random number generator.
///
/// This function is shorthand for <code>[rng()].[random()](Rng::random)</code>:
///
/// - See [`ThreadRng`] for documentation of the generator and security
/// - See [`Standard`] for documentation of supported types and distributions
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// If you're calling `random()` repeatedly, consider using a local `rng`
/// handle to save an initialization-check on each usage:
///
/// ```
/// use rand::Rng; // provides the `random` method
///
/// let mut rng = rand::rng(); // a local handle to the generator
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = rng.random();
/// }
/// ```
///
/// [`Standard`]: distr::Standard
/// [`ThreadRng`]: rngs::ThreadRng
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
pub fn random<T>() -> T
where
Standard: Distribution<T>,
{
rng().random()
}
/// Return an iterator over [`random()`] variates
///
/// This function is shorthand for
/// <code>[rng()].[random_iter](Rng::random_iter)()</code>.
///
/// # Example
///
/// ```
/// let v: Vec<i32> = rand::random_iter().take(5).collect();
/// println!("{v:?}");
/// ```
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
pub fn random_iter<T>() -> distr::DistIter<Standard, rngs::ThreadRng, T>
where
Standard: Distribution<T>,
{
rng().random_iter()
}
/// Generate a random value in the given range using the thread-local random number generator.
///
/// This function is shorthand for
/// <code>[rng()].[random_range](Rng::random_range)(<var>range</var>)</code>.
///
/// # Example
///
/// ```
/// let y: f32 = rand::random_range(0.0..=1e9);
/// println!("{}", y);
///
/// let words: Vec<&str> = "Mary had a little lamb".split(' ').collect();
/// println!("{}", words[rand::random_range(..words.len())]);
/// ```
/// Note that the first example can also be achieved (without `collect`'ing
/// to a `Vec`) using [`seq::IteratorRandom::choose`].
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
pub fn random_range<T, R>(range: R) -> T
where
T: distr::uniform::SampleUniform,
R: distr::uniform::SampleRange<T>,
{
rng().random_range(range)
}
/// Return a bool with a probability `p` of being true.
///
/// This function is shorthand for
/// <code>[rng()].[random_bool](Rng::random_bool)(<var>p</var>)</code>.
///
/// # Example
///
/// ```
/// println!("{}", rand::random_bool(1.0 / 3.0));
/// ```
///
/// # Panics
///
/// If `p < 0` or `p > 1`.
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
#[track_caller]
pub fn random_bool(p: f64) -> bool {
rng().random_bool(p)
}
/// Return a bool with a probability of `numerator/denominator` of being
/// true.
///
/// That is, `random_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
/// returning true. If `numerator == denominator`, then the returned value
/// is guaranteed to be `true`. If `numerator == 0`, then the returned
/// value is guaranteed to be `false`.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same `numerator` and `denominator` repeatedly.
///
/// This function is shorthand for
/// <code>[rng()].[random_ratio](Rng::random_ratio)(<var>numerator</var>, <var>denominator</var>)</code>.
///
/// # Panics
///
/// If `denominator == 0` or `numerator > denominator`.
///
/// # Example
///
/// ```
/// println!("{}", rand::random_ratio(2, 3));
/// ```
///
/// [`Bernoulli`]: distr::Bernoulli
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
#[track_caller]
pub fn random_ratio(numerator: u32, denominator: u32) -> bool {
rng().random_ratio(numerator, denominator)
}
/// Fill any type implementing [`Fill`] with random data
///
/// This function is shorthand for
/// <code>[rng()].[fill](Rng::fill)(<var>dest</var>)</code>.
///
/// # Example
///
/// ```
/// let mut arr = [0i8; 20];
/// rand::fill(&mut arr[..]);
/// ```
///
/// Note that you can instead use [`random()`] to generate an array of random
/// data, though this is slower for small elements (smaller than the RNG word
/// size).
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
#[inline]
#[track_caller]
pub fn fill<T: Fill + ?Sized>(dest: &mut T) {
dest.fill(&mut rng())
}
#[cfg(test)]
mod test {
use super::*;
/// Construct a deterministic RNG with the given seed
pub fn rng(seed: u64) -> impl RngCore {
// For tests, we want a statistically good, fast, reproducible RNG.
// PCG32 will do fine, and will be easy to embed if we ever need to.
const INC: u64 = 11634580027462260723;
rand_pcg::Pcg32::new(seed, INC)
}
#[test]
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
fn test_random() {
let _n: u64 = random();
let _f: f32 = random();
let _o: Option<Option<i8>> = random();
#[allow(clippy::type_complexity)]
let _many: (
(),
Option<(u32, (bool,))>,
(u8, i8, u16, i16, u32, i32, u64, i64),
(f32, (f64, (f64,))),
) = random();
}
#[test]
#[cfg(all(feature = "std", feature = "std_rng", feature = "getrandom"))]
fn test_range() {
let _n: usize = random_range(42..=43);
let _f: f32 = random_range(42.0..43.0);
}
}